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❖ The mission of the OpenMP ARB 
(Architecture Review Board) is to 
standardize directive-based multi-
language high-level parallelism that is 
performant, productive and portable.

❖ De-facto portable parallel programming since 
1997

o Compiler directives
o Data, task, SIMD parallelism
o Multicores, GPUs
o User specifies the strategy, not the 

details



‘-

3

OpenMP Evolution

Credit: Jose Monsalve Diaz, at University of Delaware

(www.top500.org)
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Roadmap to Exascale (ORNL View) 

Jaguar: 2.3 PF
Multi-core CPU
7 MW

Titan: 27 PF
Hybrid GPU/CPU
9 MW

2010

Summit:  5-10x Titan
Hybrid GPU/CPU
10 MW

2012 2017 2022

Frontier

Exascale Computing Project (ECP)
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Growing Relevance of OpenMP: 
NERSC Example 

❖ NERSC announced that OpenMP would be main on-node 
programming interface for future Perlmutter platform

❖ Desired features (mostly in OpenMP 5.0):
o Programming memories (HBM, user-managed caches, unified 

NUMA memory)

o Optimization of complex data structure motion (e.g., deep copy) 
Improved C++/object-oriented programming support

o Accelerator offloading

o Tasks: priorities, groups, better affinity, improved scheduling

o Task / thread affinity

o Variant  directives

➢ declare variant

➢ metadirective

2015: OpenMP is about 50%, out of 
all choices of X  

Update late 2016: 75% of codes 
use OpenMP

Courtesy of NERSC
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Metadirective

❖ An executable directive that 
conditionally resolves to 
another directive at compile 
time by  selecting  from  
multiple  directive  variants  
based  on traits that define an 
OpenMP condition or context.
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Context Selectors
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Trait Selectors

❖ Trait Selectors
o construct

➢ target, teams, parallel, for and simd

o device
➢ kind, isa, arch

o implementation
➢ vendor, extension

o user
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Compatibility

❖ A given context selector is compatible with a given OpenMP context if:
o All user selectors are true*

o All selectors in the context selector appear in the corresponding OpenMP context

o Properties for each context selector, are a subset of the corresponding trait of the 
OpenMP context

o Selectors in the construct set of the context selector appear in the same relative 
order as their corresponding traits in the construct trait set of the OpenMP context
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Metadirective Example

for (idev=0; idev < omp_get_num_devices(); idev++)

#pragma omp target device(idev)

#pragma omp metadirective \

when( implementation={vendor(nvidia)}, device={arch("kepler")}: \

teams num_teams(512) thread_limit(32) ) \

when( implementation={vendor(amd)}, device={arch("fiji")}: \

teams num_teams(512) thread_limit(64) ) \

default(teams)

#pragma omp distribute parallel for

for (i=0; i<N; i++) 

work_on_chunk(idev,i);

Compile time selection of hardware support
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Related Work

❖ Some compilers provide OpenMP 5.0 with limitations

❖ No compiler provides metadirective implementation
o Cray

o GNU

o Intel

o LLVM

o Rose (partial support)
➢ Yan et. al. – Extending OpenMP Metadirective Semantics for Runtime Adaptation
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Dynamic User Condition

#pragma omp metadirective \

when(user={condition(N>1000)}: target teams distribute parallel for) \

when(user={condition(N>100 && N<=1000)}: parallel for) \

default()

for( int i=0; i<N; i++)

compute();

❖ Extend metadirective to resolve a user 
condition at runtime.

❖ Create an  if-then-else  statement  
o Condition will be evaluated and 

resolved during execution

Code written using metadirective in OpenMP 5.0

Code resolved as if-then-else statement

if(N>1000) {

#pragma omp target teams distribute parallel for

for( int i=0; i<N; i++)

compute();

} else if(N>100 && N<=1000) {

#pragma omp parallel for

for( int i=0; i<N; i++)

compute();

} else {

for( int i=0; i<N; i++)

compute();

}
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Dynamic Metadirective Example
if(N<10) {

// Block 1 Serial

for(int i=0; i<N; i++)

for(int j=0; j<N; j++)

for(int k=0; k<N; k++)

C[i][j] += A[i][k] * B[k][j];

} else if (N<100) { 

// Block 2 CPU Parallel

#pragma omp parallel for collapse(2)

for(int i=0; i<N; i++)

for(int j=0; j<N; j++)

for(int k=0; k<N; k++)

C[i][j] += A[i][k] * B[k][j];   

} else {

// Block 3 GPU offloading if present

#ifdef NVPTX

#pragma omp target teams distribute parallel for

#else

#pragma omp parallel for collapse(2)

#endif

for(int i=0; i<N; i++)

for(int j=0; j<N; j++)

for(int k=0; k<N; k++)

C[i][]j] += A[i][k] * B[k][j];

}

if(N<10) {

// Block 1 Serial

for(int i=0; i<N; i++)

for(int j=0; j<N; j++)

for(int k=0; k<N; k++)

C[i][j] += A[i][k] * B[k][j];

} else if (N<100) { 

// Block 2 CPU Parallel

#pragma omp parallel for collapse(2)

for(int i=0; i<N; i++)

for(int j=0; j<N; j++)

for(int k=0; k<N; k++)

C[i][j] += A[i][k] * B[k][j];   

} else {

// Block 3 GPU offloading if present

#pragma omp metadirective \

when(device={arch("nvptx64")}: \

target teams distribute parallel for) \

default(parallel for collapse(2))

for(int i=0; i<N; i++)

for(int j=0; j<N; j++)

for(int k=0; k<N; k++)

C[i][]j] += A[i][k] * B[k][j];

}

#pragma omp metadirective \

when(device={arch("nvptx64")}, user={condition(N>=100)}: \

target teams distribute parallel for) \

when(user={condition(N>=10 && N<100)}: \

parallel for collapse(2))  \

default() 

for(int i=0; i<N; i++)

for(int j=0; j<N; j++)

for(int k=0; k<N; k++)

C[i][]j] += A[i][k] * B[k][j];

}
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Program Transformation for automatic 
GPU-Offloading with OpenMP

❖ Parallel regions detection

o Loops, functions

❖ Patterns / Data Analysis

o Suggest and evaluate several variants resulting from 
tiling, interleaving, collapsing of kernel

❖ Cost model

o ML based to determine profitability of kernel 

❖ Code Generation
o Insert pertinent OpenMP directives

Compiler
framework

to automatically
offload profitable

regions of
code using

OpenMP
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Experimental Setup

❖ SOLLVE compiler (LLVM-12.0)

❖ Summit  Supercomputing  Cluster 
o 2 IBM POWER9 CPUs

o 6 NVIDIA  Volta  (V100)  GPUs 

o GCC  version6.4.0 

o CUDA version 10.1.105

❖ SeaWulf computational cluster
o 2 Intel Xeon E5-2683v3 CPUs 

o 4 Nvidia Tesla (K8 0) GPUs

o GCC  version  6.5.0

o CUDA version 9.1.185
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Results

Execution time (in sec) of matrix multiplication for 3 different implementations

Size

Without metadirective 199.65 kB

Static metadirective 199.66 kB

Dynamic metadirective 199.91 kB
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Benchmarks

❖ Modified 18 benchmark applications from the Rodinia Benchmark Suite
o use our dynamic metadirective implementation

o diversity of the domains in which each of its applications falls

❖ 4 micro benchmarks
o Matrix Multiplication, Gauss Seidel Method, Laplace Equation and SAXPY

❖ Help the application developers learn how to use dynamic metadirective in real 
applications from different domains.

❖ Built application for :
o Summit – compute capability 7.0 for Volta V100

o SeaWulf – compute capability 3.5 for Tesla K80
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Results (Executable Size)

Percentage increase in size of the executable built with our dynamic metadirective implementation in LLVM 12.0.0



‘-

19

Results (Running Time)

Percentage change in running time of the executable built with our dynamic metadirective implementation
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Future Work

❖ Finalize implementation testing and upstream the patch to LLVM

❖ Integrate the patch with SOLLVE

❖ Research aimed at automatic code generation for heterogeneous devices

❖ Explore complex user-defined conditions

❖ Adding template definition to metadirective for type manipulation

❖ Explore potential pitfalls for downstream code generation
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Conclusion

❖ OpenMP 5.0 introduces the metadirective directive that conditionally resolves to another 
directive at compile time.

❖ Extension of user-defined contexts to allow directive variant selection at runtime.

❖ Modified the open source LLVM compiler.

❖ Modifications to the Rodinia Benchmark Suite enabled us to explore the impact of 
dynamic metadirective in an OpenMP context.

❖ Provides a guideline to the end users to help them apply these features in real 
applications.

❖ Minimal or no overhead to the user application.
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Thank You! Questions?

You can find our work at:

● https://github.com/almishra/metadirective.git
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computing system, which was made possible by a \$1.4M National Science Foundation grant (\#1531492).
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