
‘-

1

Extending the LLVM/Clang Framework
for OpenMP Metadirective Support

Alok Mishra1, Abid M. Malik2 and Barbara Chapman1,2

1Stony Brook University - USA, 2Brookhaven National Laboratory - USA

1
2

‘-

2

❖ The mission of the OpenMP ARB
(Architecture Review Board) is to
standardize directive-based multi-
language high-level parallelism that is
performant, productive and portable.

❖ De-facto portable parallel programming since
1997

o Compiler directives
o Data, task, SIMD parallelism
o Multicores, GPUs
o User specifies the strategy, not the

details

‘-

3

OpenMP Evolution

Credit: Jose Monsalve Diaz, at University of Delaware

(www.top500.org)

‘-

4

Roadmap to Exascale (ORNL View)

Jaguar: 2.3 PF
Multi-core CPU
7 MW

Titan: 27 PF
Hybrid GPU/CPU
9 MW

2010

Summit: 5-10x Titan
Hybrid GPU/CPU
10 MW

2012 2017 2022

Frontier

Exascale Computing Project (ECP)

‘-

5

Growing Relevance of OpenMP:
NERSC Example

❖ NERSC announced that OpenMP would be main on-node
programming interface for future Perlmutter platform

❖ Desired features (mostly in OpenMP 5.0):
o Programming memories (HBM, user-managed caches, unified

NUMA memory)

o Optimization of complex data structure motion (e.g., deep copy)
Improved C++/object-oriented programming support

o Accelerator offloading

o Tasks: priorities, groups, better affinity, improved scheduling

o Task / thread affinity

o Variant directives

➢ declare variant

➢ metadirective

2015: OpenMP is about 50%, out of
all choices of X

Update late 2016: 75% of codes
use OpenMP

Courtesy of NERSC

‘-

6

Metadirective

❖ An executable directive that
conditionally resolves to
another directive at compile
time by selecting from
multiple directive variants
based on traits that define an
OpenMP condition or context.

‘-

7

Context Selectors

‘-

8

Trait Selectors

❖ Trait Selectors
o construct

➢ target, teams, parallel, for and simd

o device
➢ kind, isa, arch

o implementation
➢ vendor, extension

o user

‘-

9

Compatibility

❖ A given context selector is compatible with a given OpenMP context if:
o All user selectors are true*

o All selectors in the context selector appear in the corresponding OpenMP context

o Properties for each context selector, are a subset of the corresponding trait of the
OpenMP context

o Selectors in the construct set of the context selector appear in the same relative
order as their corresponding traits in the construct trait set of the OpenMP context

‘-

10

Metadirective Example

for (idev=0; idev < omp_get_num_devices(); idev++)

#pragma omp target device(idev)

#pragma omp metadirective \

when(implementation={vendor(nvidia)}, device={arch("kepler")}: \

teams num_teams(512) thread_limit(32)) \

when(implementation={vendor(amd)}, device={arch("fiji")}: \

teams num_teams(512) thread_limit(64)) \

default(teams)

#pragma omp distribute parallel for

for (i=0; i<N; i++)

work_on_chunk(idev,i);

Compile time selection of hardware support

‘-

11

Related Work

❖ Some compilers provide OpenMP 5.0 with limitations

❖ No compiler provides metadirective implementation
o Cray

o GNU

o Intel

o LLVM

o Rose (partial support)
➢ Yan et. al. – Extending OpenMP Metadirective Semantics for Runtime Adaptation

‘-

12

Dynamic User Condition

#pragma omp metadirective \

when(user={condition(N>1000)}: target teams distribute parallel for) \

when(user={condition(N>100 && N<=1000)}: parallel for) \

default()

for(int i=0; i<N; i++)

compute();

❖ Extend metadirective to resolve a user
condition at runtime.

❖ Create an if-then-else statement
o Condition will be evaluated and

resolved during execution

Code written using metadirective in OpenMP 5.0

Code resolved as if-then-else statement

if(N>1000) {

#pragma omp target teams distribute parallel for

for(int i=0; i<N; i++)

compute();

} else if(N>100 && N<=1000) {

#pragma omp parallel for

for(int i=0; i<N; i++)

compute();

} else {

for(int i=0; i<N; i++)

compute();

}

‘-

13

Dynamic Metadirective Example
if(N<10) {

// Block 1 Serial

for(int i=0; i<N; i++)

for(int j=0; j<N; j++)

for(int k=0; k<N; k++)

C[i][j] += A[i][k] * B[k][j];

} else if (N<100) {

// Block 2 CPU Parallel

#pragma omp parallel for collapse(2)

for(int i=0; i<N; i++)

for(int j=0; j<N; j++)

for(int k=0; k<N; k++)

C[i][j] += A[i][k] * B[k][j];

} else {

// Block 3 GPU offloading if present

#ifdef NVPTX

#pragma omp target teams distribute parallel for

#else

#pragma omp parallel for collapse(2)

#endif

for(int i=0; i<N; i++)

for(int j=0; j<N; j++)

for(int k=0; k<N; k++)

C[i][]j] += A[i][k] * B[k][j];

}

if(N<10) {

// Block 1 Serial

for(int i=0; i<N; i++)

for(int j=0; j<N; j++)

for(int k=0; k<N; k++)

C[i][j] += A[i][k] * B[k][j];

} else if (N<100) {

// Block 2 CPU Parallel

#pragma omp parallel for collapse(2)

for(int i=0; i<N; i++)

for(int j=0; j<N; j++)

for(int k=0; k<N; k++)

C[i][j] += A[i][k] * B[k][j];

} else {

// Block 3 GPU offloading if present

#pragma omp metadirective \

when(device={arch("nvptx64")}: \

target teams distribute parallel for) \

default(parallel for collapse(2))

for(int i=0; i<N; i++)

for(int j=0; j<N; j++)

for(int k=0; k<N; k++)

C[i][]j] += A[i][k] * B[k][j];

}

#pragma omp metadirective \

when(device={arch("nvptx64")}, user={condition(N>=100)}: \

target teams distribute parallel for) \

when(user={condition(N>=10 && N<100)}: \

parallel for collapse(2)) \

default()

for(int i=0; i<N; i++)

for(int j=0; j<N; j++)

for(int k=0; k<N; k++)

C[i][]j] += A[i][k] * B[k][j];

}

‘-

14

Program Transformation for automatic
GPU-Offloading with OpenMP

❖ Parallel regions detection

o Loops, functions

❖ Patterns / Data Analysis

o Suggest and evaluate several variants resulting from
tiling, interleaving, collapsing of kernel

❖ Cost model

o ML based to determine profitability of kernel

❖ Code Generation
o Insert pertinent OpenMP directives

Compiler
framework

to automatically
offload profitable

regions of
code using

OpenMP

‘-

15

Experimental Setup

❖ SOLLVE compiler (LLVM-12.0)

❖ Summit Supercomputing Cluster
o 2 IBM POWER9 CPUs

o 6 NVIDIA Volta (V100) GPUs

o GCC version6.4.0

o CUDA version 10.1.105

❖ SeaWulf computational cluster
o 2 Intel Xeon E5-2683v3 CPUs

o 4 Nvidia Tesla (K8 0) GPUs

o GCC version 6.5.0

o CUDA version 9.1.185

‘-

16

Results

Execution time (in sec) of matrix multiplication for 3 different implementations

Size

Without metadirective 199.65 kB

Static metadirective 199.66 kB

Dynamic metadirective 199.91 kB

‘-

17

Benchmarks

❖ Modified 18 benchmark applications from the Rodinia Benchmark Suite
o use our dynamic metadirective implementation

o diversity of the domains in which each of its applications falls

❖ 4 micro benchmarks
o Matrix Multiplication, Gauss Seidel Method, Laplace Equation and SAXPY

❖ Help the application developers learn how to use dynamic metadirective in real
applications from different domains.

❖ Built application for :
o Summit – compute capability 7.0 for Volta V100

o SeaWulf – compute capability 3.5 for Tesla K80

‘-

18

Results (Executable Size)

Percentage increase in size of the executable built with our dynamic metadirective implementation in LLVM 12.0.0

‘-

19

Results (Running Time)

Percentage change in running time of the executable built with our dynamic metadirective implementation

‘-

20

Future Work

❖ Finalize implementation testing and upstream the patch to LLVM

❖ Integrate the patch with SOLLVE

❖ Research aimed at automatic code generation for heterogeneous devices

❖ Explore complex user-defined conditions

❖ Adding template definition to metadirective for type manipulation

❖ Explore potential pitfalls for downstream code generation

‘-

21

Conclusion

❖ OpenMP 5.0 introduces the metadirective directive that conditionally resolves to another
directive at compile time.

❖ Extension of user-defined contexts to allow directive variant selection at runtime.

❖ Modified the open source LLVM compiler.

❖ Modifications to the Rodinia Benchmark Suite enabled us to explore the impact of
dynamic metadirective in an OpenMP context.

❖ Provides a guideline to the end users to help them apply these features in real
applications.

❖ Minimal or no overhead to the user application.

‘-

2222

Thank You! Questions?

You can find our work at:

● https://github.com/almishra/metadirective.git

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of
Science and the National Nuclear Security Administration.This research used resources of the Oak Ridge Leadership Computing Facility, which is a
DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725.The authors would like to thank Stony Brook Research
Computing and Cyberinfrastructure, and the Institute for Advanced Computational Science at Stony Brook University for access to the SeaWulf
computing system, which was made possible by a \$1.4M National Science Foundation grant (\#1531492).

alok.mishra@stonybrook.edu

