
Towards Kernel Fusion for the
Optimisation of Scientific Applications
Andrew Lamzed-Short, Gihan Mudalige, University of Warwick
Tim Law, AWE
Andrew Mallinson, Intel
Stephen Jarvis, University of Birmingham

Nov 12th 2020 / LLVM-HPC 2020

1© British Crown Owned Copyright 2020/AWE. Published with permission of the Controller of Her Britannic Majesty's Stationery Office. This document is of United Kingdom origin and contains
proprietary information which is the property of the Secretary of State for Defence. It is furnished in confidence and may not be copied, used or disclosed in whole or in part without prior
written consent of Defence Intellectual Property Rights DGDCDIPR-PL — Ministry of Defence, Abbey Wood, Bristol, BS34 8JH, England.

• Motivation

• Implementation

• Experimental Setup and Results

• Conclusion and Future Work

Agenda

2

• Modular functions used in large codebases, teams

• Function calls incur a performance cost at runtime

• Loading data in and out of main memory and cache incurs additional
performance penalties

Motivation

3

Idea

• Intermediate stage during compilation to fuse these kernel functions
together

• Maintains code modularity; recovers runtime performance

Motivation

4

Kernel restrictions

• Called exactly once per main loop iteration

• Returns void, inputs and outputs defined in function parameters

• Function body consists only of a loop - no preceding or succeeding
statements

Input Program Constraints

5

Loop restrictions

• Exactly one level deep - no nested loops

• Stride of 1; increasing from a constant value

•When two loop iteration spaces between kernels differ, they differ by at
most 1 iteration*

Input Program Constraints

6

[[clang::fuse_kernel]]  
void foo(const int len, const double* x, const double* y,  
 double* out)  
{  
 for (int k = 0; k < len; ++k)  
 out[k] = (x[k] * y[k]) / 0.25;  
}

Example

7

O1 optimisation level required

Other passes required for consistency

Consistent Input

8

• indvar

• simplifycfg

• mem2reg

• scalar-evolution

• loop-rotate

Compilation Pipeline

9

• Directed acyclic graph (DAG): kernels as
vertices, dependencies as edges

• Traversed using topological sort to resolve
inter-kernel dependencies

Implementation

10

Implemented as a ModulePass

• Require whole module intermediate
representation (IR)

• Read, fuse, and remove all kernel functions

•Write a new fused kernel function, replace
calls

Implementation

11

• Additional function declarations included and inlined into IR during
compilation

• Source code decoration introduced: [[clang::fuse_kernel]]

Implementation

12

• BasicBlock structure of a Function
with a single Loop within

• Single Static Assignment form

Canonical Loop Structure in LLVM IR

• Create a skeleton function, new
induction variable

• Append for.body’s, replace references

• Merge header blocks into set

Fusion Algorithm

Override runOnModule(Module& m) function

• Filter list of kernel functions

• Create DAG

• Create fused kernel, fusing each function and its loop

• Remove kernels, emit fused kernel to IR

Implementation

15

• Intel® Xeon® Gold 6252 Processor (formerly codenamed “Cascade Lake”)

• 24 physical cores, 2 threads per core; 2.10GHz clock speed

• 6 channel memory bandwidth, max. 131.13GB/s

• L2 cache: 24,576 KiB; L3 cache: 36,608KiB

• Vectorisation: Intel® Advanced Vector Extensions 512 (Intel® AVX-512)

Experimental Setup

16

• L3 cache can support an array of length

• Stream benchmark recommends 4x this to properly measure cache
bandwidth, but will test wide range of problem sizes upto and including

• Proportional amount of iterations for equal amount of work

36608000
8

= 4756000

Experimental Setup

17

Experimental Setup

18

Problem Size 1000 2000 4000 8000 16000 32000 64000 128000 256000
Iterations 13107200 6553600 3276800 1638400 819200 409600 204800 102400 51200
Problem Size 512000 1024000 2048000 4096000 8192000 16384000 32768000 65536000
Iterations 25600 12800 6400 3200 1600 800 400 200

• 1.5 to 4x speedup over unfused program

• Factor determined by program’s runtime characteristics

• Performance parity with hand-fused version of same program

Results

19

• Quintessential use-case for fusion
techniques
• 4x runtime speedup
• Predominantly memory-bound,

low arithmetic complexity
• 4 lots of daxpy

• See where problem falls out of L2
and L3 caches

Memory-Bound Problems

• Performance still to be gained
with problems with increased
compute-boundedness and
arithmetic complexity
• Factor is smaller

• Same performance cliffs as before

Mixed Boundedness Problems

• Identical performance for
problems whose performance is
dictated primarily by the
complexity of their computations

Compute-Bound Problems

•We are developing an LLVM transformation pass to optimise the
runtime performance of kernelled scientific applications

• Present an upto 4x speedup by improving data locality and cache
residency

Conclusion

23

• Build up the complexity to support real-world applications and
benchmarks

• Upstream integration into the LLVM repository and/or SYCL-based
compilers (such as Intel’s oneAPI DPC++ compiler)

Future Work

24

