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• Modular functions used in large codebases, teams 

• Function calls incur a performance cost at runtime 

• Loading data in and out of main memory and cache incurs additional 
performance penalties

Motivation

3



Idea 

• Intermediate stage during compilation to fuse these kernel functions 
together 

• Maintains code modularity; recovers runtime performance

Motivation
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Kernel restrictions 

• Called exactly once per main loop iteration 

• Returns void, inputs and outputs defined in function parameters 

• Function body consists only of a loop  - no preceding or succeeding 
statements

Input Program Constraints
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Loop restrictions 

• Exactly one level deep  - no nested loops 

• Stride of 1; increasing from a constant value 

•When two loop iteration spaces between kernels differ, they differ by at 
most 1 iteration*

Input Program Constraints
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[[clang::fuse_kernel]]  
void foo(const int len, const double* x, const double* y,  
    double* out)  
{  
    for (int k = 0; k < len; ++k)  
        out[k] = (x[k] * y[k]) / 0.25;  
}

Example
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O1 optimisation level required 

Other passes required for consistency

Consistent Input
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• indvar 

• simplifycfg 

• mem2reg 

• scalar-evolution 

• loop-rotate



Compilation Pipeline
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• Directed acyclic graph (DAG): kernels as 
vertices, dependencies as edges  

• Traversed using topological sort to resolve 
inter-kernel dependencies

Implementation
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Implemented as a ModulePass 

• Require whole module intermediate 
representation (IR) 

• Read, fuse, and remove all kernel functions 

•Write a new fused kernel function, replace 
calls

Implementation
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• Additional function declarations included and inlined into IR during 
compilation 

• Source code decoration introduced: [[clang::fuse_kernel]]

Implementation
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• BasicBlock structure of a Function 
with a single Loop within 

• Single Static Assignment form

Canonical Loop Structure in LLVM IR



• Create a skeleton function, new 
induction variable 

• Append for.body’s, replace references 

• Merge header blocks into set

Fusion Algorithm



Override runOnModule(Module& m) function 

• Filter list of kernel functions 

• Create DAG 

• Create fused kernel, fusing each function and its loop 

• Remove kernels, emit fused kernel to IR

Implementation
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• Intel® Xeon® Gold 6252 Processor (formerly codenamed “Cascade Lake”) 

• 24 physical cores, 2 threads per core; 2.10GHz clock speed 

• 6 channel memory bandwidth, max. 131.13GB/s 

• L2 cache: 24,576 KiB; L3 cache: 36,608KiB 

• Vectorisation: Intel® Advanced Vector Extensions 512 (Intel® AVX-512)

Experimental Setup
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• L3 cache can support an array of length  

• Stream benchmark recommends 4x this to properly measure cache 
bandwidth, but will test wide range of problem sizes upto and including 

• Proportional amount of iterations for equal amount of work

36608000
8

= 4756000

Experimental Setup
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Experimental Setup
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Problem Size 1000 2000 4000 8000 16000 32000 64000 128000 256000
Iterations 13107200 6553600 3276800 1638400 819200 409600 204800 102400 51200
Problem Size 512000 1024000 2048000 4096000 8192000 16384000 32768000 65536000
Iterations 25600 12800 6400 3200 1600 800 400 200



• 1.5 to 4x speedup over unfused program 

• Factor determined by program’s runtime characteristics 

• Performance parity with hand-fused version of same program

Results
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• Quintessential use-case for fusion 
techniques 
• 4x runtime speedup 
• Predominantly memory-bound, 

low arithmetic complexity 
• 4 lots of daxpy 

• See where problem falls out of L2 
and L3 caches

Memory-Bound Problems



• Performance still to be gained 
with problems with increased 
compute-boundedness and 
arithmetic complexity 
• Factor is smaller 

• Same performance cliffs as before

Mixed Boundedness Problems



• Identical performance for 
problems whose performance is 
dictated primarily by the 
complexity of their computations

Compute-Bound Problems



•We are developing an LLVM transformation pass to optimise the 
runtime performance of kernelled scientific applications 

• Present an upto 4x speedup by improving data locality and cache 
residency

Conclusion

23



• Build up the complexity to support real-world applications and 
benchmarks 

• Upstream integration into the LLVM repository and/or SYCL-based 
compilers (such as Intel’s oneAPI DPC++ compiler)

Future Work
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