
Deep Learning-based Approximate Graph-Coloring Algorithm for Register Allocation
- Dibyendu Das, Shahid Asghar Ahmad, Venkataramanan Kumar

LLVM-HPC2020 Workshop

Nov 12, 2020 • Atlanta, Georgia

- Basic Concepts and Motivation

- Our DL-method using LSTM

- LLVM’s GRA vs our method

- Results

- Conclusion and Future Work

Agenda

2LLVM-HPC-2020

- Graph-coloring is an important problem in CS with numerous applications

- A graph coloring is an assignment of labels, called colors, to the vertices of a
graph such that no two adjacent vertices share the same color

- The chromatic number X(G) of a graph G is the minimal number of colors for which
such an assignment is possible

- Solved using heuristics

What is Graph-Coloring ?

A graph coloring for a graph with
6 vertices. It is impossible to
color the graph with 2 colors, so
the graph has chromatic number
3.

3LLVM-HPC-2020

- Register Allocation is an important problem in the area of compiler code generation

- Usually the number of registers available < number of variables used

- Create what is known as the *interference graph* which models registers which need
to be *live* at the same time

Register Allocation as a Graph-Coloring Problem

4LLVM-HPC-2020

- Register allocation (RA) is an important application of graph coloring in compilers
- Heuristics + lots of tuning

- Idea is to see whether we can build a simple deep-learning model that can color
graphs and can be used for RA

- We build an LSTM-based model and experiment with some popular graphs as well as
interference graphs generated by LLVM’s RA

Motivation for a DL-based Register Allocation Algorithm

5LLVM-HPC-2020

- Viewed as a sequence-2-sequence translation via LSTMs

- An input sequence where each item of the sequence corresponds to a node of the graph
- Each item of the input sequence is an encoding of the adjacency vector of that vertex

- The output sequence is of the same length as the input sequence (number of nodes of
the graph)

- Each item of the output sequence is a *color* assignment for that node

- Adjacent nodes cannot carry the same color
- But it is difficult to encode constraints in LSTM

- It is difficult to get perfect coloring for large graphs
- Even perfect coloring for graphs with several hundred nodes is very time-consuming

Modeling Graph coloring using LSTMs

6LLVM-HPC-2020

- Three stacked layers of LSTM followed by a FC(dense) layer and ReLU

- The figure shows an unrolled LSTM

Our LSTM model

1 1 0 0 …

0 1 0 1 …

 1 0 0 1…

Adj Matrix

0 ≤ Color(v) ≤ n-1

1024 hidden units per LSTM

7LLVM-HPC-2020

- The aim is to apply such a model for moderate-sized graphs (few hundred nodes)

- Many interference graphs created by LLVM’s RA for SPEC CPU 2017 are of similar size

- Use supervised training by generating random graphs and coloring them optimally
- Used a package called *nauty* (http://keithbriggs.info/very_nauty.html)

- Generated random graphs up to 100 nodes of varying sparsity (very sparse to very dense)

- Colored them optimally and generated the color assignments for the nodes

- Used ~10000 samples for training

- Used 2 LONG INTS (128 bits) to encode the adjacency vertex of a node

Training the model (1)

8LLVM-HPC-2020

http://keithbriggs.info/very_nauty.html

- One sample of the input+output sequence for training looks like this:
- < <v0_first_64bits,v0_second_64bits>,…,<v99_first_64bits,v99_second_64bits>, < color(v0), color(v1), …, color(v99)> >

- Sequences may be padded with zeros for graphs having a smaller number of vertices

- The model is trained for 100 epochs

- Up to a training error value of 5%

Training the model (2)

9LLVM-HPC-2020

- For inference the input needed is just the adjacency vector encoding
- < <v0_first_64bits,v0_second_64bits>,…,<v99_first_64bits,v99_second_64bits>, 0,0, …, 0 >

- However there is a big catch with the inference output
- The coloring assignment may be INVALID

- Since constraints are not encoded in LSTM adjacent nodes having the same color can happen

- Our solution:
- Use a post-pass called *color correction* to restore the validity of color assignment

- May need additional colors

Inference and Color-correction

10LLVM-HPC-2020

- Forest-Fire graph

- has a chromatic number of 5

- LSTM-based model colors with 4 colors resulting
in 2 invalid edges

- These edges are <v
2
,v

3
> and <v

1
,v

5
>

- v
5

can reuse the color c
3
 as none of its

neighboring nodes use c
3
. v

2
 requires a new

color c
5

as both v
2
 and v

3
’s neighbors use all the

colors

- So finally we also get 5 colors ☺

Color-correction

11LLVM-HPC-2020

- Karate Graph – X(G) – 5

- LSTM uses 4 colors but 23 invalid edges out of 79 edges which is ~30% of the edges.
On applying color correction, we use only one extra color resulting in coloring the graph
optimally using 5 colors

- Baidu Graph – X(G) – 3

- LSTM uses 3 colors with 35 out of 90 edges being invalid which is ~38%. We are
unable to reach the optimal number of 3 colors. But we can match the coloring number
of the best heuristics available today by being able to color with 4 colors (after
correction)

Inference performance on some popular graphs

12LLVM-HPC-2020

- GRA does not maintain an interference graph
explicitly

- We create the interference graph at the end of
the Live Interval Analysis phase

- The interference graph is then written out in
the input format required for inferencing

- We collected the interference graphs for the
functions of certain SPEC CPU® 2017
benchmarks. We ignored those functions
which have more than 100 nodes in the
interference graph

- We collect the register count of each function
after codegen

DL-model vs LLVM’s GRA

LSTM-based model

Interference graph

Color/register assignment

13LLVM-HPC-2020

- Some results of mcf and leela

DL-model vs LLVM’s GRA

14LLVM-HPC-2020

- A plausible setup for LLVM

An architecture of a DL-based RA

15LLVM-HPC-2020

- Preliminary and exploratory work to check whether an LSTM-based solution is feasible
- Looks promising

- Baidu (2018) solution using Reinforcement Learning but costly and complicated

- One work using Graph NN (but not for color assignment)

- Can experiment with sequence input orders (ex: Topo-sort, DFS, BFS)

- Can experiment with newer LSTMs like Attention/Transformer

- Can use LLVM’s graphs as training inputs rather than random graph

Conclusions + Future Work

16LLVM-HPC-2020

