> SL20

Everywhere | more
we dre | than hpc.

Deep Learning-based Approximate Graph-Colc
- Dibyendu Das, Shahid Asghar Ahmad, Venkataramanan K

LLVM-HPC2020 Workshop

Nov 12, 2020 ¢ Atlanta, Georgia

Agenda

- Basic Concepts and Motivation
- Our DL-method using LSTM

- LLVM'’s GRA vs our method

- Results

- Conclusion and Future Work

LLVM-HPC-2020 2

What is Graph-Coloring ?

- Graph-coloring is an important problem in CS with numerous applications

- A graph coloring is an assignment of labels, called colors, to the vertices of a
graph such that no two adjacent vertices share the same color

- The chromatic number X(G) of a graph G is the minimal number of colors for which
such an assignment is possible

- Solved using heuristics

A graph coloring for a graph with
6 vertices. It is impossible to
color the graph with 2 colors, so
the graph has chromatic number
3.

LLVM-HPC-2020

Register Allocation as a Graph-Coloring Problem

- Register Allocation is an important problem in the area of compiler code generation
- Usually the number of registers available < number of variables used

- Create what is known as the *interference graph™ which models registers which need
to be *live* at the same time

Example:
live-in: k 7

g := mem[j+12]
h =k -1

f s =g % h
e := mem[]+8]
m := mem[j+16]
b := mem[f]

C := e + 8

a i= ©

k :=m + 4
= b

live-out: A k j

LLVM-HPC-2020

Motivation for a DL-based Register Allocation Algorithm

- Register allocation (RA) is an important application of graph coloring in compilers
- Heuristics + lots of tuning

- Idea is to see whether we can build a simple deep-learning model that can color
graphs and can be used for RA

- We build an LSTM-based model and experiment with some popular graphs as well as
interference graphs generated by LLVM’s RA

LLVM-HPC-2020

Modeling Graph coloring using LSTMs

- Viewed as a sequence-2-sequence translation via LSTMs

- Aninput sequence where each item of the sequence corresponds to a node of the graph
- Each item of the input sequence is an encoding of the adjacency vector of that vertex

- The output sequence is of the same length as the input sequence (number of nodes of
the graph)

- Each item of the output sequence is a *color* assignment for that node

- Adjacent nodes cannot carry the same color
- But itis difficult to encode constraints in LSTM

- Itis difficult to get perfect coloring for large graphs
- Even perfect coloring for graphs with several hundred nodes is very time-consuming

LLVM-HPC-2020

Our LSTM model

- Three stacked layers of LSTM followed by a FC(dense) layer and RelLU

- The figure shows an unrolled LSTM
0 < Color(v) < n-1

é Layer 0 Y4 Layerl\ 4 Layer 2 N
) Adj Matrix L <Adivector-Vpomms LSTML, LSTM2, LSTM3, | Dense RelU s <Color(Vo)>
1100... |
0101... . <Adj vector- V> LSTM1, LSTM2, LSTM3, | Dense ReLU mmmp <Color(V,)>
I 1001 .|
\qd] vector-V, ,> LSTM1, , LSTM2, , LSTM3,, | Dense RelLU mmm <Color(V,,)>
1 P AY A 7

1024 hidden units per LSTM

LLVM-HPC-2020 7

Training the model (1)

The aim is to apply such a model for moderate-sized graphs (few hundred nodes)
Many interference graphs created by LLVM’s RA for SPEC CPU 2017 are of similar size

Use supervised training by generating random graphs and coloring them optimally

Used a package called *nauty* (http://keithbriggs.info/very_nauty.html)

Generated random graphs up to 100 nodes of varying sparsity (very sparse to very dense)
Colored them optimally and generated the color assignments for the nodes

Used ~10000 samples for training

Used 2 LONG INTS (128 bits) to encode the adjacency vertex of a node

LLVM-HPC-2020

http://keithbriggs.info/very_nauty.html

Training the model (2)

One sample of the input+output sequence for training looks like this:

- < <v0_first_64bits,v0_second_64bits>,...,<v99_first_64bits,v99_second_64bits>, < color(v0), color(vl), ..., color(v99)> >

Sequences may be padded with zeros for graphs having a smaller number of vertices

The model is trained for 100 epochs

Up to a training error value of 5%

LLVM-HPC-2020

Inference and Color-correction

For inference the input needed is just the adjacency vector encoding

- < <vO0_first_64bits,v0_second_64bits>,...,<v99 first_64bits,v99_second_64bits>, 0,0, ..., 0 >

However there is a big catch with the inference output
- The coloring assignment may be INVALID
- Since constraints are not encoded in LSTM adjacent nodes having the same color can happen

Our solution:

- Use a post-pass called *color correction* to restore the validity of color assignment
- May need additional colors

LLVM-HPC-2020

10

Color-correction

Forest-Fire graph
- has a chromatic number of 5

LSTM-based model colors with 4 colors resulting
in 2 invalid edges

These edges are <V,,V,> and <V,,V.>

V. can reuse the color c, as none of its
neighboring nodes use c,. v, requires a new
color c.as both v, and v,’s neighbors use all the
colors

So finally we also get 5 colors &

LLVM-HPC-2020

11

Inference performance on some popular graphs

Karate Graph — X(G) — 5

LSTM uses 4 colors but 23 invalid edges out of 79 edges which is ~¥30% of the edges.
On applying color correction, we use only one extra color resulting in coloring the graph
optimally using 5 colors

Baidu Graph — X(G) — 3

LSTM uses 3 colors with 35 out of 90 edges being invalid which is ¥38%. We are
unable to reach the optimal number of 3 colors. But we can match the coloring number
of the best heuristics available today by being able to color with 4 colors (after
correction)

LLVM-HPC-2020 5 colive

12

DL-model vs LLVM’s GRA

GRA does not maintain an interference graph b e o
explicitly i T — |
We create the interference graph at the end of L ‘ \
the Live Interval Analysis phase As‘;f:f:gm —— Eviion ——— Split —‘
The interference graph is then written out in . “ | |
the input format required for inferencing L \

Spill Interference graph

We collected the interference graphs for the | *
functions of certain SPEC CPU® 2017
benchmarks. We ignored those functions

which have more than 100 nodes in the
interference graph LSTM-based model

We collect the register count of each function
after codegen

Color/register assignment

LLVM-HPC-2020 13

DL-model vs LLVM’s GRA

Some results of mcf and leela

LLVM-HPC-2020

Functions LLVM reg-alloc DL before DL after
correction correction
switch_arcs 17 | 14 22
» Vreplacie_’wealcer_arc [16 | 10 . 13
insert_new_arc 14 T 11 15
resize_prob 7 , 4 7
marc_arcs 12 .[10 12
hreffeshPositions 14 14 14
refreshArcPositions | 8] 4 7
master 23 13 24
‘ worker 25] 16 24
markBaskets 11 9 9
primal_bea_mpp 21 14 26
 primal_feasible 9 ‘ 10 10
- ﬁaw_org_cost I 14 VI 7 710
flow_cost 13 8 10
refresh_neigbour_lists 10 6 9
update_tree [19 8 19
. primal_start_artificial 11 7 9
primal_imnus S
write_objective_value .[5
 main o 3 |
TOTAL 262] 174 257

’ Functions LM reg-alloc [DL before correction [DL after correction
Ifzma_index_buffer_de«:ode | 11 7 9
index_decode 12 13 15

' tma_index_hash_append 10 10 10
lzma_index_hash_decode 14 16 18
zma_stream_buffer_decode 14 6 11
stream_decode | 14 19 19
{Izma_stream_footer_decode_ 8 6 6
Jzma_vli_decode 13 8 13
Iz_encoder_prepare 13 | 6 13
lzma_lz_enceder_init 11 7 9
lIz_encode 14 10 15
Izma_mf_hc3_find 21 9 19
TOTAL 732 500 715

14

An architecture of a DL-based RA

- A plausible setup for LLVM

GRA-based allocator

allocator

!

Choose
better
allocation

LLVM-HPC-2020 15

Conclusions + Future Work

Preliminary and exploratory work to check whether an LSTM-based solution is feasible
- Looks promising

Baidu (2018) solution using Reinforcement Learning but costly and complicated
One work using Graph NN (but not for color assignment)

Can experiment with sequence input orders (ex: Topo-sort, DFS, BFS)

Can experiment with newer LSTMs like Attention/Transformer

Can use LLVM'’s graphs as training inputs rather than random graph

LLVM-HPC-2020

16

