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Hi, I’m Mehdi Amini and I’d like to thank the organizer for inviting me for this talk.
Today, I’ll talk about MLIR, but beyond the core infrastructure that we implemented in 
the LLVM project, I’d like to push forward a vision for the next decade around the 
need for agility in compiler development, and the potential we have to build a strong 
ecosystem around the MLIR infrastructure, in the LLVM Project.



High-Performance Computing
Do we have a common definition for HPC? Some online definitions:

● “the use of parallel processing for running advanced application programs 
efficiently, reliably and fast”

● “the practice of aggregating computing power in a way that delivers much higher 
performance than one could get out of a typical desktop computer in order to 
solve large problems in science, engineering, or business.”

● Wikipedia redirects to “SuperComputer”? What about the “edge”?

I’m glad to have the opportunity to look a bit more in HPC today. In order to prepare 
for this talk I wanted to refresh myself on the state of the art HPC environment, and 
looked up some definition of HPC. The first one describes it as “the use of parallel 
processing for running advanced application programs efficiently, reliably and fast”, 
this is my favorite one as it is fairly general, and we can include a lot of application 
space “at the edge”: in embedded environment or even in everyone’s pocket with your 
smartphone. 
Wikipedia is more old-school there and: “High Performance Computing” page 
redirects to “Supercomputer”. 
Let’s look into a “typical” HPC setup.



Your Typical HPC Setup
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In general you start with a machine with many CPU cores, the amount varies: for 
example a single node in the current fastest supercomputer, the Japanese system 
Fugaku, has a single ARM CPU with 48 cores and 32 GB HBM. The former 
champion, IBM Summit has two 28 cores Power9 and 512 GB DDR.

An important change in the large decade is that the use of HW accelerators is now 
common, mostly has because general purpose GPUs are ubiquitous. For Summit it 
accounts for 6 GPUs per node and 96 GB extra HBM, coherent with the CPU.
At this point, let’s have a look at the commonly available programming abstractions.
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TBB?
Kokkos?
C++ Standard?

Multi-core can be targeted by various APIs, a common one in HPC may be OpenMP: 
the programmer is given control over C/C++/Fortran programs mostly with directives 
expressed as pragmas instructing the compiler transformations which are fairly 
limited. The control is still in the hands of the programmer.

For GPUs, the de-facto programming model is Cuda. OpenCL is the Khronos 
counter-part to CUDA, intended to be more widely available, but it is likely not taking 
advantage of the most recent features of Nvidia GPUs the way CUDA does. Both of 
these solutions leaves fairly little room to the compiler in practice.

SYCL is a more recent Khronos standard, and can be seen as taking advantage of 
modern C++ feature to provide higher-level programming model for OpenCL. Intel is 
particularly involved with it and SYCL is present under the Intel One API. It remains a 
C++ language extension, where the role of the compiler is fairly limited.

OpenACC is a directive based approach like OpenMP, however it makes different 
tradeoffs and the programmer use the directives to instruct the compiler about 
properties of the program (a loop is parallel, buffers consumed and produced) and let 
more responsibility to the compiler to transform the program.

We can’t be exhaustive here, there are also many library based approaches that are 
popular: Cilk, Thread Building Block, Kokkos, and even the C++ Standard since 
C++17! These all have limited compiler involvement though.



So this was all about a single node, that’s already a lot to play with, but surely there is 
a limit to what you can do here. That’s why you may want to scale this up!
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Compute Network Storage

Cilk?
TBB?
Kokkos?
C++ Standard?

OK, now that we scaled up the machines, we need also some network, possibly 
something like Infiniband which is super fast and fancy (with things like RDMA). 

Finally we won’t get far without a lot of storage globally accessible from our nodes.
Now that we have to go through the network, the programming model becomes more 
challenging.
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GASNet, Charm++
Legion?

The “big fish” in this domain is still MPI. This is kind of the “assembly language” of 
distributed computing, but somehow it is still heavily used directly.

Some alternatives may be GASNet and Charm++, and at a higher level, the Legion 
runtime. These are all libraries approaches, and GASNet is used as a target by other 
high-level projects (language or frameworks).

One of them is Chapel: the last one of the PGAS still actively developed. This is also 
my favorite, but I am biased: I discovered Chapel with a full-day tutorial from Brad 
Chamberlain in person in 2009. I found the the kind of productivity boost a compiler 
can bring to be so amazing that I left my job manually writing OpenMP, Cuda and MPI 
and started a PhD on compilers.
A more standard approach may be coarray Fortran, which are now in the standard. 
But I’m less familiar with it.
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What about DSLs though? It seems like the perfect solution! Scientists express their 
problem in a programming model that captures the essence of their mental model and 
the compiler can optimize it at a high-level and applies various strategies to map it to 
the target system.
I suspect that DSLs unfortunately require a very large investment, as one not only 
need to design a solution tailored to a specific domain, but also need to build the 
entire toolchain all the way down to MPI (or GASNet) and CUDA. The barrier to entry 
is far too large: there are no abstractions that you can compose and reuse while 
writing your DSL compiler. We’re coming a bit to the thesis behind this presentation: 
software libraries are composable and reusable, compilers abstractions aren’t as easy 
to compose.

Finally in the accelerator domain, it seems the GPU have been so powerful that we 
aren’t seeing domain specific accelerator for HPC: I haven’t found much more 
references since the Gravity Pipe (GRAPE), which is an accelerator for gravitational 
model.

https://en.wikipedia.org/wiki/Gravity_Pipe
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So what about the LLVM project and the LLVM community: it seems that we have a 
good solution for CPUs. LLVM IR is the common language here and has been 
successful as the compiler abstraction for targeting single-core CPU. LLVM has 
support for OpenMP and OpenCL in Clang, but these are mainly supported as 
language feature exposed to the programmer. The OpenMP IR Builder have been 
refactored from Clang into LLVM for the purpose of sharing these with Flang and 
MLIR, but this is still fairly limited.

Clang supports CUDA, but LLVM IR when used to target GPU only models the stream 
of execution of a single GPU “thread”.

Finally of course LLVM with libc++ is involved in the C++ standard library support for 
parallel primitives. So it seems as a community that there is a very large space for the 
compiler to be present and bring solutions. We believe MLIR is the way for the LLVM 
project to start building and offering the kind of reusable abstractions that are need for 
assembling a compiler in such a complex space.

https://en.wikipedia.org/wiki/Gravity_Pipe


Similarity and Contrast with Deep Learning
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Let contrast the “traditional” HPC environment with what is happening in deep 
learning.

To begin with for some serious learning, you need compute, a lot of compute! 
Probably a very similar configuration our HPC cluster.

Then you need some superfast network: you need to feed these nodes with data and 
training involves a lot of communication as well!

Finally, you will likely want a very fast storage backend to keep your compute nodes 
busy with all the data to process.
All in all we have a very similar system. What is interesting is that deep learning is a 
much more recent field that really exploded the last 5 years. It does not have the 
baggage associated with HPC, it does not have the millions of line of Fortran libraries 
to carry over.
To some extent deep learning may give us some insights into how we may develop 
programming model and compilers for HPC if we started over from scratch today.
Indeed in this domain it is all about DSLs.
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● Baidu Kunlun 
● Cerebras
● Google TPU
● GraphCore
● Huawei Ascend 
● Intel Nervana Habana

The big players from the last 5 years are MXNet, TensorFlow, and PyTorch. But there 
is a myriad of other frameworks out there.
A common theme though is to meet the scientists where they are: i.e. mostly in data 
science language like Python or Julia. There is virtually no one who would target a 
heterogeneous cluster with C++ or Fortran and MPI in order to train or deploy 
machine learning models.

Another trend is the development of custom accelerators: the large companies like 
Intel and Google are present of course, but there is also a large number of startup in 
the field.
Let’s look a little bit more into how deep learning training work and I’ll zoom a bit into 
how Google TPUs are setup, and how the compiler is a center-piece to the scaling.



Distributed Deep Learning Training 101

compute local 
loss / gradientTruth

Forward / 
Prediction

Backward /
update weight

Straightforward approach: 
process one image at a time

Alright so we first need a task to learn, and preferably something really useful. In 
general this involves pictures of cats, and we need a lot of them to train our model. 

Then we’ll run the forward pass for our model which will compute a prediction, in 
general very incorrect at the beginning. At this point we need to provide feedback to 
the system, in general with an external source of truth (manual labelling of the initial 
set of picture for example) and compute the loss, i.e. how much incorrect the 
prediction was. Then we process with the backward pass which adjust all the 
coefficient (or weights) involved.
Now this representation is a bit incorrect, even in theory we’re not supposed to 
process images one at a time but all at once because some parts of the algorithm 
need to normalize for the dataset. In practice we perform “batched training”.



Distributed Deep Learning Training 101

compute local 
loss / gradientTruth

Forward / 
Prediction

Backward /
update weight

Batched process:
“Loop Vectorization” - N images per iteration

all-reduce

Average the loss/gradient

The batch process consist in “vectorizing” the loop, and taking the “average” of the 
evaluation of these iteration together. The forward pass also take advantage of the 
batch to perform some normalization across the “vector” of inputs.

In practice the size of this batch (or “minibatch”) is part of the hyperparameters of the 
training: the experts will manually tune this by trial and error. The ideal value can vary 
based on the model and the system.

This is all good, not how do we scale this up to tens or hundreds of nodes?



Node 2
(also called replica in TensorFlow)

Distributed Deep Learning Training 101

compute local 
loss / gradientTruth

all-reduce

Forward / 
Prediction

Backward /
update weight

gradient

Node 1

compute local 
loss / gradientTruth

all-reduce

Forward / 
Prediction

Backward /
update weight

gradient

Multi-Batched process: N images per iteration x M nodes

This is fairly simple, we just distribute different “minibatch” to different nodes, they can 
perform the prediction independently and communicate only for averaging the loss 
before applying the backward pass. Their weights always have the same value: this is 
synchronous training. We’re not gonna get into asynchronous training today, we’ll 
show how we map synchronous training to a distributed cluster in practice, using 
Google TPUs.



Google Tensor Processing Units (TPUv3)

420 TFLOPS, 128 GB HBM

TPU Pod: 1024 chips; 32x32 torus topology;
100+ PFLOPS

4096 chips; 128x32; mesh topology;
400+ PFLOPS

https://cacm.acm.org/magazines/2020/7/245702-a-domain-specific-supercomputer-for-training-deep-neural-networks/fulltext

* TPU operates on BF16 format 

TPUs, or Tensor Processing Units are publicly available on Google Cloud in their 
second and third generation. A single tray in a machine has 4 chips / 8 cores and 128 
GB HBM, for 420 TFLOPS, not counting the CPUs in the attached host.

TPUs are assembled in PODs, with 1024 chips / 2048 cores connected with a 
dedicated inter-connect network joining the TPUs in a 2D torus topology: no host is 
involved in the communications.

More recently, Google published how multiple pods can be chained together and 
showed scaling to 4 PODs, with over 400 PFLOPS available! Keep in mind that TPUs 
operate at peak on BF16 format.

https://cacm.acm.org/magazines/2020/7/245702-a-domain-specific-supercomputer-for-training-deep-neural-networks/fulltext
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TPUs are Supercomputers!

Rank Name RMax (PFlops)

1 Summit 148

2 Sierra 95

3 Sunway TaihuLight 93

4 Tianhe-2A 61

5 Frontera 24

6 Piz Daint 21

7 Trinity 20

8 AI Bridging Cloud Infrastructure 20

Source: https://www.top500.org/lists/2019/11/
* TPU operates on BF16 format 

TPU Pod: 1024 chips; 32x32 torus topology;
100+ PFLOPS

4096 chips; 128x32; mesh topology;
400+ PFLOPS

Here’s a list of top 10 supercomputers from the top500 supercomputer tracker. 
Although TPUs operate on BF16 format, the order of magnitude deserve the 
comparison.
Looking at this and at the amount of investment in supporting Deep Learning 
infrastructure: some people can see it as a new driving force for high 
performance computing. 

This list is from last year, but TPUv3 is also not the latest...

https://www.top500.org/lists/2019/11/
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TPUs are Supercomputers!

https://cloud.google.com/blog/products/ai-machine-learning/google-breaks-ai-performance-records-in-
mlperf-with-worlds-fastest-training-supercomputer

Just this spring in the most recent round of MLPerf, which is a benchmark 
suite and a competition where academics and industry are invited to submit 
their best score at training some models, Google announced their TPUv4 and 
show impressive improvements over a year!

https://cloud.google.com/blog/products/ai-machine-learning/google-breaks-ai-performance-records-in-mlperf-with-worlds-fastest-training-supercomputer
https://cloud.google.com/blog/products/ai-machine-learning/google-breaks-ai-performance-records-in-mlperf-with-worlds-fastest-training-supercomputer


From Supercomputing
to Embedded HPC

Highly specialized hardware
e.g. Google Edge TPU

Edge and embedded
computing zoo

Machine learning is also very present also on the edge, most mobile vendors are 
including accelerator designed for deep learning workloads. Google produces the 
“Edge TPU” to this end.



https://basicmi.github.io/AI-Chip/

https://basicmi.github.io/AI-Chip/


● Under the hood:
○ Systolic arrays → allow high re-use of intermediate values

○ Parallel processing units, configured statically

○ 1970s computer architecture concept*

○ Use them for the most fundamental linear algebra operation, namely, matrix multiplication

● See also Cloud TPU: Codesigning Architecture and Infrastructure (HotChips 2019)

● Problems: lot of constraints(alignment, padding, no Icache, etc.), hard to program (8-way 

VLIW), even more when managing multiple TPUs at once!

Tensor Processing Units

*Kung, H.T. and Leiserson, C.E., 1979. Systolic arrays (for VLSI). In Sparse Matrix 
Proceedings 1978 (Vol. 1, pp. 256-282). Society for Industrial and Applied Mathematics.

SOLUTION:  

Deep learning involves a lot of linear algebra and in particular stresses the need for 
optimizing matrix multiplications. So without surprise, a TPU Core include a 128x128 
matrix-multiply unit, with a not-revolutionary design since it borrow the systolic arrays 
concept from the 70s. The TPU also has independent vector and scalar units.

While very powerful, the TPU is difficult to program at a low-level and imposes many 
constraints around memory transferts to scratchpad, padding and alignment, VLIW 
packing, etc.

What’s interesting is that from the beginning, the chosen path to address the 
programmatically challenge has been to rely on the compiler, and only expose only a 
high-level programming model for the TPU.

https://www.hotchips.org/hc31/HC31_T3_Cloud_TPU_Codesign.pdf
https://cacm.acm.org/magazines/2020/7/245702-a-domain-specific-supercomputer-for-training-deep-neural-networks/fulltext
https://cacm.acm.org/magazines/2020/7/245702-a-domain-specific-supercomputer-for-training-deep-neural-networks/fulltext


● XLA HLO IR : High-level (mostly) linear algebra operations 

○ Examples: 

■ Dense linear algebra : matmul, dot, convolutions, cholesky

■ Control : While, Conditional

■ Data-ordering manipulations : reshape, transpose, sort

■ Sparse operations : gather, scatter 

● Operations designed with deep learning in mind

● The XLA compiler represents these operations as a dataflow graph-based IR. Edges 

represent data (tensor) flow, nodes represent an operation. 

● Input tensors are statically bounded-shape: the compiler computes an entire static 

memory layout.

XLA: Accelerated Linear Algebra

More recent competitors: Glow, TVM.

XLA is the only way to target the TPU: it exposes a programming model relying on 
operators manipulating tensors (multi-dimensional array) that are assembled in a 
mostly-pure dataflow graph (communications primitives require some ordering).
The operators are general linear algebra operator, but with also many operator 
suitable for what we commonly find in deep learning. A design principle in general is 
to keep the operators orthogonals to each other. 
A limitation of the IR is that every tensor has to be entirely statically shaped: this may 
seem overly restrictive but it is also allows simplify the compiler and provide the ability 
to perform a lot of of necessary optimization for TPU, in particular layout optimization 
to account for the padding and alignment constraint.
Ultimately the entire program is operating on statically laid out and memory bounded: 
there is no dynamic memory allocation involved in the execution of the program.
Because this is fundamentally a compiler technology, the operators are “fused” during 
codegen: even though in the dataflow graph a sequence of element-wise operation 
would appear as if there is a temporary array materialized between each operator.
XLA codegen can also make use of libraries, for example when targeting GPUs it will 
use cuDNN primitives when appropriate.

There are some competitors in this field, for example Glow and TVM. However XLA 
has some unique features.

https://www.tensorflow.org/xla/operation_semantics
https://ai.facebook.com/tools/glow/
https://tvm.apache.org/


XLA Example

21

This is an example of a fusion of operator: a fusion of operators is handled as single 
unit by the codegen.



XLA Scaling: Multi TPUs

22

● Model Parallelism: multiple device can be represented in the graph with automatic 

partitioning and communication insertions.

Let’s see how do we scale to make efficient use of our TPU Pods.
First in an XLA computation, nodes can be assigned to different devices. XLA will 
ultimately partition the graph and insert communication primitives. The implementation 
of these communication primitives depends on the target system, on TPU systems it’ll 
involve DMA using the private inter-connect network. On Nvidia GPU it would likely 
involve NCCL.

This technique can also reduce the memory limit for the model by splitting it across 
two devices, making use of more HBM available.
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Partitioning annotations can also be placed on the inputs, the 

compiler shard the computation accordingly:

tpu_config=tpu_config.TPUConfig(

    iterations_per_loop=100,

    num_cores_per_replica=4,

    input_partition_dims=[[1, 2, 2, 1], None]])

XLA Scaling: Multi TPUs

Another way to use multiple TPUs for a single computation is spatial partitioning:  the 
user only has to indicate how to shard the input and the compiler will take care of the 
rest.
For example here is a TensorFlow API to target TPUs: the user indicates that they 
would like to use 4 TPU cores per replica for their models. They also specify how to 
shard the dimension of the input. For example here the input images will be split in 4 
pieces and distributed to the 4 TPUs. 

The compiler is then responsible to manage the partitioning of the graph, managing 
communication of the halos or redundant computations as needed.
This can improve the performance, but also again it also increases the amount of 
HBM memory available.
The user interface is minimal and it is all automated by the compiler.
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Weight Update Sharding: eliminate redundancy across device in backprop

XLA Scaling: Multi TPUs

Repeated on 
every replica

compute local 
gradient

input

all-reduce

weight

update weight

gradient

compute local 
gradient

input

all-reduce

weight

update weight

gradient

Batch sharded 
across replicas

Device 1 Device 2

Identical

Another optimization implemented in XLA is “weight update sharding”. 
Each node processes different data, compute the local gradient, which are then 
averaged across all nodes before being back-propagated on each node.
Note that after averaging the gradient, the computation is identical on every nodes. 
This can be a large part of the process, up to 45% of the whole time on some models!
XLA can recognize this situation and automatically shard this computation, including 
adding the extra communication.
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Weight Update Sharding: eliminate redundancy across device in backprop

XLA Scaling: Multi TPUs

Device 1 Device 2

compute local 
gradient

input

reduce-scatter

weight

update 
weight

Gradient 
shard

compute local 
gradient

input

reduce-scatter

weight

update 
weight

Gradient 
shard

all-gather all-gather

Fully-reduced 
gradient shards
Sharded 
update

Instead of averaging the gradients so that every node has the entire copy, the nodes 
will only get a shard of the gradient, for example here only half, and perform the 
backpropagation on this shard and actually communicate their shard of the update 
weight to the other nodes.
We’re trading of an extra communication for much less compute and potentially 
memory.
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XLA and TPU: More Resources

XLA: Accelerated Linear Algebra

Automated GPU Kernel Fusion with XLA

Scale MLPerf-0.6 models on Google TPU-v3 Pods

GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism

GShard: Scaling Giant Models with Conditional Computation and Automatic Sharding

Automatic Cross-Replica Sharding of Weight Update in Data-Parallel Training

Mesh-TensorFlow: Deep Learning for Supercomputers.

JAX is Autograd and XLA, brought 
together for high-performance 
machine learning research. https://github.com/google/jax

Here are some references if you’re interested in getting more depth into this topic.

Also, a rising star in the domain of Deep Learning framework is JAX: this is a project 
coming out of Google research that started as a direct thin wrapper on top of XLA. If 
you want to play with XLA capability without all the layers of complexity that comes 
with a large project like TensorFlow, JAX is a very elegant solution.
So I showed a sample of the capabilities of XLA, showcasing the kind of things that 
can be achieved by compiler co-designed with a HPC system. A key point is that we 
achieve very advanced optimizations which allow Machine Learning scientists to stay 
in Python, Julia, Swift, or any high-level language and never have to see any Fortran 
or MPI. Optimization like weight-update sharding are not for everyone to be 
implemented manually either.
Yet, these users manage to make use of a supercomputer? Can this be the future for 
HPC in general? What kind of compiler capabilities do we need to get there?

http://llvm.org/devmtg/2017-03//2017/02/20/accepted-sessions.html#20
https://llvm.org/devmtg/2019-04/talks.html#Talk_7
https://arxiv.org/pdf/1909.09756.pdf
https://arxiv.org/abs/1811.06965
https://arxiv.org/abs/2006.16668
https://arxiv.org/pdf/2004.13336.pdf
https://arxiv.org/abs/1811.02084
https://github.com/google/jax


MLIR Genesis

Alright, let me come back to the idea behind MLIR first and why it may be a game 
changer for the LLVM community.



From Programming Languages to the TensorFlow Compiler

LLVM IR Machine IR Asm

Swift

Java & JVM 
Languages Java BC

SIL IRSwift AST

Rust MIR IRRust AST

Julia Julia IRJulia AST

XLA HLOTF GraphTensorFlow 
Ecosystem

● Domain specific optimizations, progressive lowering
● Common LLVM platform for mid/low-level optimizing compilation in SSA form

Clang AST
C, C++, ObjC, 

CUDA, OpenCL, ...   CIL IR 

LLVM managed to achieve the “hourglass” model of providing a unified target for 
CPU. However modern languages also redefine their own IR, for example optimizing 
the Swift refcounting is much easier at the SIL level where you can capture the 
high-level semantics. Similarly Rust borrow-checker would be difficult to implement in 
LLVM, and Rust has its own IR (MIR) that enables this.
Many frameworks in the machine learning world are targeting LLVM.  They are 
effectively defining higher level IRs in the tensor domain, and lowering to LLVM for 
CPUs and GPUs.  This is structurally the same thing as any other language frontend.



The TensorFlow Compiler Ecosystem

TensorFlow 
Graph

LLVM IR

TPU IR

Several others
Tensor RT

nGraph

NNAPI

Many others

Core ML

Many “Graph” IRs, each with challenges:
● Similar-but-different proprietary technologies: not going away anytime soon

● Fragile, poor UI when failures happen: e.g. poor/no location info, or even crashes

● Duplication of infrastructure at all levels

Grappler
XLA HLO

TensorFlow Lite

Zooming on the TensorFlow ecosystem, at the top is the XLA path that we talked 
about extensively. However TensorFlow supports many other systems. Most of them 
are fairly similar conceptually and all these arrows are complicated “bridges” that try to 
integrate these projects together. They rarely lead to a good user experience though, 
they are fragile, rarely complete, and hard to maintain.
In general there is poor reuse and a lot of redundancy across all these projects. 



MLIR: A toolkit for representing and transforming “code”

Represent and transform IR ⇄↺⇓

Represent Multiple Levels of IR at the same time

● tree-based IRs (ASTs) 
● data-flow graph IRs (TF Graph, SSA)
● control-flow graph IRs (TF Graph, SSA)
● target-specific parallelism (CPU, GPU, TPU)
● machine instructions

While enabling

Common compiler infrastructure 

● location tracking
● richer type system(s)
● common set of conversion passes
● LLVM-inspired infrastructure

And much more

MLIR is at its Core a generic infrastructure for representing and transforming “code”. It 
provides a framework to create an IR and manipulate it. The project is heavily inspired 
by the LLVM infrastructure and engineering practices in general. Since MLIR allows to 
create new IRs, it also provides facilities for multiple IRs to cohabitate together and a 
framework for converting one to another, or a mix of others.



MLIR Story
1. The right abstraction at the right time
2. Progressive conversion and lowering
3. Extend and reuse
4. Industry standard

We listen & learn as we go

The idea is that this capability can be leveraged to easily add new abstractions. This 
incentive the compiler engineers to favor very progressive lowering of the abstraction 
level, which is convenient in terms of design and testing of the compiler components, 
but also maximize the reuse.
This approach has been successful so far, and convinced enough partners in the 
industry that the best place for MLIR governance and ensuring a good collaboration 
was the LLVM project.



MLIR: Under the hood

Let’s see quickly what is under the hood and explore the basic principles of MLIR.



Very few core-defined aspects, MLIR is generic and favor extensibility:

- Region: a list of basic blocks chained through their terminators to form a CFG.

- Block: a sequential list of Operations. They take arguments instead of using phi nodes.

- Operation: a generic single unit of “code”. 

- takes individual Values as operands,

- produces one or more SSA Values as results.

- A terminator operation also has a list of successors blocks, as well as arguments matching the blocks.

MLIR Core Concepts

There aren’t any hard-coded structures or specific operations in MLIR: 

even Module and Function are defined just as regular operations!

MLIR core concepts are fairly simple. The IR is organized around three main data 
structure:

- Region: …
- Block: …
- Operation: …

The important part to remember is that there aren’t any hard-coded structure or 
operations in MLIR. Even the top-level Module and the definitions of Function are just 
modeled as any other operation.
 



Operations, Not Instructions

 %res:2 = "mydialect.morph"(%input#3) { some.attribute = true, other_attribute = 1.5 }
             : (!mydialect<"custom_type">) -> (!mydialect<"other_type">, !mydialect<"other_type">)
                                                                    loc(callsite("foo" at "mysource.cc":10:8))

● No predefined set of instructions
● Operations are like “opaque functions” to MLIR

Name of the
results

Op Id
Number of 

value returned
Dialect
prefix Argument

Index in
the producer’s results

Dialect prefix 
for the type

Opaque string
/

Dialect specific 
type

List of attributes:
constant named arguments

Mandatory and 
Rich Location

https://mlir.llvm.org/docs/LangRef/#operations
https://github.com/llvm/llvm-project/blob/master/mlir/include/mlir/IR/Operation.h#L27

In MLIR, everything is about Operations, not Instructions: we put the emphasis to 
distinguish from the LLVM view. In LLVM you have a fixed list of instructions, which all 
are defined with their own class which defines members and storage. It isn’t the case 
in MLIR: there is one opaque C++ class and it defines the storage in a generic way for 
any possible operation.
Operations can be coarse grain (perform a matrix-multiplication, or launch a remote 
RPC task) or can directly carry loop nest or other kind of nested “regions”, we’ll show 
some examples later.
Let’s starts with the anatomy of an operation.
What you see on the screen with a lot of color is the generic assembly format for 
MLIR. Just like LLVM has a textual output, any MLIR operation can be represented in 
this generic format. This makes serialization and deserialization really simple.
So what are the elements that define an operation? There is an isomorphic relation 
between the in-memory representation and the generic format, let me walk you 
through this.

First, what uniquely identify an operation is its name, you have the operation ID, 
prefixed by the dialect name. Together this provides a unique name for an operation.

An operation produces SSA results. An LLVM instruction produces only one SSA 
value at most, in MLIR they can generate many. This operation for example defines 2 
SSA value as results. The textual IR here uses a single name for the SSA value, and 
an index to differentiate the two values.

https://mlir.llvm.org/docs/LangRef/#operations
https://github.com/llvm/llvm-project/blob/master/mlir/include/mlir/IR/Operation.h#L27


In parentheses, you have the list of operands for the operation. This is a 
comma-separated list of SSA values. You can see here the name of the SSA value 
but also an optional index. Here we’ll use the fourth result of the operation producing 
the “%input” result.

After the list of operands is a dictionary of Attributes, which can be seen as extras 
operands with are restricted to be constant literal values, they can’t refer to other SSA 
value.
On the second line is the type of the operation. We’re using a functional notation, so 
after the colon you have the types of the operands in parenthesis.

The type after the bang is the name of a dialect, followed in angle brackets by the 
custom serialization of the type defined by the dialect, it is opaque to MLIR.  After the 
arrow is the type for the results, here this operation defines two results so we have 
two types.

Finally on the last line is the location for the operation. We often elide it from the 
debug print, but it is always present in memory. Locations are rich: here we can 
represent that it corresponds to a particular call site of a function at a given place in 
the source.
Alright this what an Operation is made for, and something to keep in mind is that 
when you define an operation you really can’t add more state or storage to an 
operation. When you define an operation in MLIR you just actually put restriction on 
what is valid for the operation: for example can it return a result? Multiple? What are 
the restrictions on the types? What attributes are allowed? Actually there is one more 
thing though, let’s look at regions.



%results:2 = "d.operation"(%arg0, %arg1) ({

    // Regions belong to Ops and can have multiple blocks.

    ^block(%argument: !d.type):

        %value = "nested.operation"() ({

            // Ops can contain nested regions.

            "d.op"() : () -> ()

        }) : () -> (!d.other_type)

        "consume.value"(%value) : (!d.other_type) -> ()

    ^other_block:

        "d.terminator"() [^block(%argument : !d.type)] : () 

-> ()

}) : () -> (!d.type, !d.other_type)

● Regions are list of basic blocks nested inside of an operation.
○ Basic blocks are a list of operations: the IR structure is recursively nested!

● Conceptually similar to function call, but can reference SSA values defined outside.

● SSA values defined inside don’t escape.

Recursive nesting: Operations -> Regions -> Blocks
Region

Block

Region

https://mlir.llvm.org/docs/Tutorials/UnderstandingTheIRStructure/
https://mlir.llvm.org/docs/LangRef/#high-level-structure

On top of the previous introduced element, another important property of an operation 
is that it can hold a list of “region”. The concept of region does not have an equivalent 
in LLVM IR. The best analogy is to look at LLVM functions, these are first class 
structure in LLVM which hold a body in the form of a CFG. The CFG is a control flow 
graph which is hold as chained list of basic blocks. In MLIR, everything is an 
operation: even a function is an operation. Operations optionally have one or multiple 
regions attached, and a region is nothing else than a list of blocks which may 
represent a CFG. This is how functions are modelled in MLIR: an operation with a 
region that models the body of the function.
Since a region is a list of basic blocks, which themselves are a list of operations: the 
structure is recursively nested! This is a whole new dimension in the IR which opens 
up design possibilities. Regions are commonly used in MLIR and very powerful to 
express the structure of the IR, we’ll come back to this with multiple examples.
And with this simple structure you can understand almost everything in MLIR.

https://mlir.llvm.org/docs/Tutorials/UnderstandingTheIRStructure/
https://mlir.llvm.org/docs/LangRef/#high-level-structure


https://mlir.llvm.org/docs/LangRef/#dialects
https://github.com/llvm/llvm-project/blob/master/mlir/include/mlir/IR/Dialect.h#L37
https://mlir.llvm.org/docs/Tutorials/CreatingADialect/

Dialects: Defining Rules and Semantics for the IR

A MLIR dialect is a logical grouping including:

● A prefix (“namespace” reservation)

● A list of custom types, each its C++ class.

● A list of operations, each its name and C++ class implementation:

○ Verifier for operation invariants (e.g. toy.print must have a single operand)

○ Semantics (has-no-side-effects, constant-folding, CSE-allowed, ….)

● Passes: analysis, transformations, and dialect conversions.

● Possibly custom parser and assembly printer

You will hear a lot about “Dialects“ in the MLIR ecosystem. A Dialect is a bit like a C++ 
library: it is at minima a namespace where you can group a set of types, a set of 
operations that operate on these types (or types defined by other dialects), and a set 
of custom attributes. So just like a C++ library where you define classes, methods, 
etc. The Dialect is your own IR library: by defining this set of 
types/attributes/operations you can define a closed set that has a well defined 
semantics that you can manipulate.
A dialect is loaded inside the MLIRContext and extends MLIR using various hooks, 
like for example to the IR verifier: it will enforce invariants on the IR (just like the LLVM 
verifier).
Dialects are cheap abstraction: you create one like you create a new C++ library. 
There are roughly 20 dialects that come bundled with MLIR, but many more have 
been defined by MLIR users: our internal users at Google have defined over 60 so 
far!
Something else that is important to know before looking at examples of MLIR, is that 
the IR does not always look like the generic format we’ve seen previously. This is 
because Dialect authors can also customize the printing/parsing of Operations and 
Types to make the IR more readable. Dialect IR are more like DSLs: you may need to 
read the documentation to interpret them correctly. You can always disable the 
custom printing and have a generic print of the IR though.

https://mlir.llvm.org/docs/LangRef/#dialects
https://github.com/llvm/llvm-project/blob/master/mlir/include/mlir/IR/Dialect.h#L37
https://mlir.llvm.org/docs/Tutorials/CreatingADialect/


Example: Affine Dialect
func @test() {
  affine.for %k = 0 to 10 {
    affine.for %l = 0 to 10 {
      affine.if (d0) : (8*d0 - 4 >= 0, -8*d0 + 7 >= 0)(%k) {
        // Dead code, because no multiple of 8 lies between 4 and 7.
        "foo"(%k) : (index) -> ()
      }
    }
  }
  return
}

With custom parsing/printing: affine.for
operations with an attached region feels
like a regular for!

Extra semantics constraints in this dialect: the if condition is 
an affine relationship on the enclosing loop indices.

#set0 = (d0) : (d0 * 8 - 4 >= 0, d0 * -8 + 7 >= 0)
func @test() {
  "affine.for"() {lower_bound: #map0, step: 1 : index, upper_bound: #map1} : () -> () {
  ^bb1(%i0: index):
    "affine.for"() {lower_bound: #map0, step: 1 : index, upper_bound: #map1} : () -> () 
{
    ^bb2(%i1: index):
      "affine.if"(%i0) {condition: #set0} : (index) -> () {
        "foo"(%i0) : (index) -> ()
        "affine.terminator"() : () -> ()
      } { // else block
      }
      "affine.terminator"() : () -> ()
    }
    ...

Same code without custom parsing/printing: 
isomorphic to the internal in-memory 
representation.

https://mlir.llvm.org/docs/Dialects/Affine/

Here is an example of nice syntax and advanced semantics modelling at the same 
using regions is shown here with the Affine Dialect.
The affine dialect is modeling polyhedral loop nests (and a bit more), we see that here 
you have a function with nested loops and inside the innermost loop you have a 
conditional with some sort of linear equation describing the condition. This is 
important for polyhedral tools because it ensures that the loop nest can be analyzed 
and transforms within a mathematical framework for correctness.
<walkthrough the IR modeling>
This affine.for loops are pretty and readable, but the generic form really show the 
actual implementation.
<walkthrough the IR modeling>

https://mlir.llvm.org/docs/Dialects/Affine/


%13 = llvm.alloca %arg0 x !llvm.double : (!llvm.i32) -> !llvm.ptr<double>

%14 = llvm.getelementptr %13[%arg0, %arg0]

          : (!llvm.ptr<double>, !llvm.i32, !llvm.i32) -> !llvm.ptr<double>

%15 = llvm.load %14 : !llvm.ptr<double>

llvm.store %15, %13 : !llvm.ptr<double>

%16 = llvm.bitcast %13 : !llvm.ptr<double> to !llvm.ptr<i64>

%17 = llvm.call @foo(%arg0) : (!llvm.i32) -> !llvm.struct<(i32, double, i32)>

%18 = llvm.extractvalue %17[0] : !llvm.struct<(i32, double, i32)>

%19 = llvm.insertvalue %18, %17[2] : !llvm.struct<(i32, double, i32)>

%20 = llvm.constant(@foo : (!llvm.i32) -> !llvm.struct<(i32, double, i32)>) :

        !llvm.ptr<func<struct<i32, double, i32> (i32)>>

%21 = llvm.call %20(%arg0) : (!llvm.i32) -> !llvm.struct<(i32, double, i32)>

LLVM as a dialect

More intro to MLIR: https://mlir.llvm.org/docs/Tutorials/Toy/

Another example of a dialect with a custom printer is the LLVM IR itself. Indeed the 
LLVM IR can be modeled as a dialect, and actually is implemented in MLIR!
You’ll find the LLVM instructions and types, prefixed with the `llvm.` dialect 
namespace.
The LLVM dialect isn’t feature-complete (inline assembly, block addresses, …), but 
defines enough of LLVM to support the common need of DSL-oriented codegen.
There are also some minor deviation from LLVM IR: for example because of MLIR 
structure, constants aren’t special and are instead modeled as regular operations.

For more details into the MLIR infrastructure, feel free to lookup the website for 
documentation, and in particular the Toy tutorial which can walk you through a 
practical example.

https://mlir.llvm.org/docs/Tutorials/Toy/


MLIR: an 
Ecosystem

Alright so that was the basics of the MLIR infrastructure. But while the infrastructure 
alone is already a boost to get started writing a compiler, a large of the value proposal 
here is the vision of the ecosystem we can grow in MLIR.



Changing the paradigm for compiler design

● Software libraries are reusable, composable, … 
=> software development is agile!

● Can we have compiler IR and abstractions that are easily reusable and composable?

=> MLIR Dialects can make heterogeneous compiler development agile!

No silver bullet:

● composability is never perfect, assembling an entire toolchain is still work,
● But just like assembling a large project by reusing libraries is!

In this section I’d like to bring back the parallel between how software development is 
agile: you can reuse other people’s libraries and compose them, and how this is 
missing in compiler design. The idea is that MLIR Dialects may be getting us closer to 
have this capability for IR design. In particular for heterogeneous compilers where the 
paradigms are various and we can’t come up with a single IR like LLVM achieved on 
CPU, we need to be agile and have flexibility.
This isn’t a silver bullet though: assembling a toolchain like XLA for a heterogeneous 
system in a particular domain is still intrinsically a lot of work. But just like the 
availability of libraries like boost aren’t making software development trivial either.
In this section I’d like to talk about these compiler IR abstractions, and develop a 
narrative that would surface the value there is to have all of these composable as 
needed in MLIR.



Example: Affine Dialect for Polyhedral Compilation

func @test() {
  affine.for %k = 0 to 10 {
    affine.for %l = 0 to 10 {
      affine.if (d0) : (d0 - 1 >= 0, -d0 + 8 >= 0)(%k) {
        // Call foo except on the first and last iteration of %k
        "foo"(%k) : (index) -> ()
      }
    }
  }
  return
}

https://mlir.llvm.org/docs/Dialects/Affine/

The first abstraction is one I mentioned before: the Affine dialect opens the door to 
polyhedral optimization. This can be a very powerful tool to have at hand when your 
problem can fit the framework.

https://mlir.llvm.org/docs/Dialects/Affine/


Example: Affine Dialect for Polyhedral Compilation

Using PlaidML for Affine Parallel Optimizations in MLIR (Intel) C4ML Workshop (In conjunction with CGO 2020)

This abstraction has already been leveraged and adopted, for example at Intel who 
presented their early experience with MLIR and the affine dialect during the “Compiler 
for Machine Learning” Workshop earlier this year.
The affine dialect, and the in-tree path to LLVM can boost not only the development of 
such tools, but also compiler research in this domain.

https://drive.google.com/open?id=1ewpND_ujfLNM5KKLhPGJRIYs55UkoBGU


Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman Amarasinghe.
The tensor algebra compiler. Proc. ACM Program. Lang. 1, OOPSLA, Article 77 (October 2017)

Example: The Tensor Linear Algebra Compiler (TACO)
http://tensor-compiler.org/index.html

Particularly interesting for its flexibility 
in sparse code generation.

Current collaboration to reimplement
it in MLIR!

https://llvm.discourse.group/t/sparse-tensors/2020

Another example of compiler abstraction is what has been demonstrated by the 
TACO compiler, and in particular in the domain of codegen for sparse linear algebra.
TACO is a fantastic standalone tool, but it is likely not straightforward to integrate and 
reuse in your project. For example if we were to add support to sparse code 
generation to a project like XLA, using TACO would probably be through rigid 
interface built for the purpose of the integration. It isn’t clear if the current 
implementation of TACO would fit in the deployment flow of XLA either. These hurdles 
in general lead to reimplementing custom solutions from scratch.
Luckily here, my colleague Aart is currently bringing TACO’s ideas into MLIR!
That means that our ecosystem is growing with two different abstractions, for 
polyhedral codegen and for sparse codegen, in an infrastructure intended for making 
them compose together in the same project.

http://tensor-compiler.org/index.html
https://llvm.discourse.group/t/mlir-support-for-sparse-tensors/2020


Example: Heterogeneous Compiler IR

We mentioned before that HPC is frequently heterogeneous nowadays, in particular 
GPUs are ubiquitous. If I start a DSL compiler to support HPC users I likely want solid 
abstraction to target accelerators.



Unified Accelerator and Host Representation
llvm.mlir.global internal @global(42 : i64) : !llvm.i64

func @some_func(%arg0 : memref<?xf32>) {

  %cst = constant 8 : index

  gpu.launch blocks(%bx, %by, %bz) in (%grid_x = %cst, %grid_y = %cst,

                                       %grid_z = %cst)

             threads(%tx, %ty, %tz) in (%block_x = %cst, %block_y = %cst,

                                        %block_z = %cst) {

    gpu.call @device_function() : () -> ()

    %0 = llvm.mlir.addressof @global : !llvm<"i64*">

    gpu.return

  }

  return

}

gpu.func @device_function() {

  gpu.call @recursive_device_function() : () -> ()

  gpu.return

}

gpu.func @recursive_device_function() {

  gpu.call @recursive_device_function() : () -> ()

  gpu.return

}

MLIR has already in tree the capability to represent a unified view of the project 
across the host and the accelerator.
For example here you have a `gpu.launch` operation that delimit a region that will 
execute on the accelerator. The code on the GPU is then able to call GPU functions 
directly. We can make use of the LLVM IR dialect for the host and the device side.



Nested Module -> Split Host/Device Code in the Same IR
module attributes {gpu.container_module} {
  func @some_func(%arg0: memref<?xf32>) {
    %c8 = constant 8 : index
    gpu.launch_func(%c8, %c8, %c8, %c8, %c8, %c8) 
       {kernel = "function_call_kernel", kernel_module = @function_call_kernel}
       : (index, index, index, index, index, index) -> ()
    return
  }
  gpu.module @function_call_kernel attributes {gpu.kernel_module} {
    func @function_call_kernel() attributes {gpu.kernel} {
      %0 = gpu.block_id() {dimension = "x"} : () -> index
      ...
      %3 = gpu.thread_id() {dimension = "x"} : () -> index
      ...
      call @device_function() : () -> ()
      %12 = llvm.mlir.addressof @global : !llvm<"i64*">
      return
    }
    func @device_function() {
      call @recursive_device_function() : () -> ()
      gpu.return
    }
    llvm.mlir.global internal @global(42 : i64) : !llvm.i64
    func @recursive_device_function() {
      call @recursive_device_function() : () -> ()
      gpu.return
    }
  }
}

Existing transformations can be reused to further split the IR with a nested 
`gpu.module` to group the code that has to be compiled for the accelerator.
Again this is all in the same unified IR that preserve the ability to model the entire 
program across the host-accelerator boundary.
A basic flow is already implemented in MLIR to JIT this and execute it on MLIR GPU, 
using separate compilation module at the LLVM level to build the PTX and embed it in 
the CPU module that can be executed.



Nested Module -> Split Host/Device Code in the Same IR

SPIR-V Dialect and Conversions (MLIR Open Meeting Tech Talk)

MLIR also supports SPIRV and Vulkan, we have in-tree a SPIRV dialect allowing to 
both import SPIRV binaries but more importantly target SPIRV/Vulkan platforms from 
the GPU abstractions. This may be less common in HPC at the moment, but Vulkan is 
very common in mobile platforms.

https://drive.google.com/file/d/1WInMmnqvFpspHY5dYdiCok4fbfZkt23k/view


Example: MLIR PatternMatch Execution

Meta-level: MLIR applied to MLIR internals!

This example may be less interesting from an ecosystem point of view, but it shows 
an interesting meta-level aspect and I find it too interesting technically to leave it out.



MLIR Pattern Matching and Rewrite
~ Instruction Selection problem.

The idea is to create a dialect to manipulate MLIR IR generically. Starting from 
rewrites on the IR approaching the instruction selection problem, we can model the 
available rewrites as a finite state machine, and then generate the code that will 
actually perform the rewrite. However how to optimize this state machine? Well we 
implemented a dialect for this!



MLIR Pattern Matching and Rewrite
An MLIR dialect to manipulate MLIR IR!
func @matcher(%0 : !Operation) {

^bb0:

  CheckArgCount(%0) [^bb1, ^ex0] {count = 2}

       : (!Operation) -> ()

^bb1:

  CheckOpName(%0) [^bb2, ^bb5] {name = "add"}

       : (!Operation) -> ()

^bb2:

  %1 = GetOperand(%0) {index = 0} : (!Operation) -> !Value

  %2 = GetOperand(%0) {index = 1} : (!Operation) -> !Value

  ValueEqualTo(%1, %2) [^rr0, ^bb3] : (!Value, !Value) -> ()

^rr0:

  // Save x

  RegisterResult(%1) [^bb3] {id = 0} : (!Value) -> ()

^bb3:

  %3 = GetDefiningOp(%2) : (!Value) -> !Operation

  CheckOpName(%3) [^bb4, ^bb5] {name = "mul"}

       : (!Operation) -> ()

^bb4:

  CheckArgCount(%3) [^rr1, ^bb5] {count = 2}

       : (!Operation) -> ()

^rr1:

  // Save x, y, and z

  %4 = GetOperand(%3) {index = 0} : (!Operation) -> !Value

  %5 = GetOperand(%4) {index = 1} : (!Operation) -> !Value

  RegisterResult(%1, %4, %5) [^bb5] {id = 1}

       : (!Value, !Value, !Value) -> ()

^bb5:

  // Previous calls are not necessarily visible here

  %6 = GetOperand(%0) {index = 0} : (!Operation) -> !Value

  %7 = GetOperand(%0) {index = 1} : (!Operation) -> !Value

  ValueEqualTo(%6, %7) [^bb6,  ^ex0] : (!Value, !Value) -> ()

^bb6:

  CheckOpName(%0) [^rr2, ^ex0] {name = "mul"}

       : (!Operation) -> ()

^rr2:

  // Save x

  RegisterResult(%6) [^ex0] {id = 2} : (!Value) -> ()

^ex0:

  return

}

Interpreted Pattern Match Execution (MLIR Open Meeting Tech Talk)
High level pattern definition dialect PDL Documentation
Interpreted Pattern Execution Dialect Documentation

This the meta-level I mentioned before, the dialect can describe manipulation of the 
IR as a program that can be understood, and optimized. For example CSE to 
eliminate redundant checks on the IR. This also provide a way for dynamically 
injecting rewrites into the compiler, using a plugin system for example, and optimizing 
the state machine at runtime.

https://docs.google.com/presentation/d/1U3AHtvn_ONR2D4-ENbghYjqsgocu0VPw_2LLYj_A7Sc/edit
https://mlir.llvm.org/docs/Dialects/PDLOps/
https://mlir.llvm.org/docs/Dialects/PDLInterpOps/


Example: MLIR for HW design

Another example that showcase the wide applicability of the infrastructure is the use 
of MLIR for HW design.



Poster from LLVM Dev Meeting’20 
https://llvm.org/devmtg/2020-09/

Example: CIRCT Project
Apply MLIR and the LLVM development methodology to the domain of hardware design tools

In particular the LLVM project recently accepted in its incubator the CIRCT project 
which aims to apply MLIR and the LLVM development methodology to the domain of 
hardware design tools. You can see on the schemar on the right points of integration 
with the ecosystem (with the MLIR logo), and in dark the newly introduced 
abstractions. 
These abstractions may not be interesting to you if you’re not in custom HW, but I can 
directly see how this may help people targeting FPGA for example.

https://llvm.org/devmtg/2020-09/


Example: Runtime Abstractions

Another category of abstractions is about runtime systems.



IREE: Intermediate Representation Execution Environment

holistic approach towards ML model 
compilation: the IR produced contains 
both the scheduling logic, required to 
communicate data dependencies to 
low-level parallel pipelined 
hardware/API like Vulkan, and the 
execution logic, encoding dense 
computation on the hardware in the 
form of hardware/API-specific binaries 
like SPIR-V.

https://google.github.io/iree/

IREE is already the perfect example of leveraging the ecosystem and integrate their 
ideas into it. They built a low-level runtime system, starting from the principles that 
drives the Vulkan API, and built multiple levels of abstractions above this: all in MLIR. 
In this picture that represents IREE, most abstractions have a matching Dialect: 
`flow`, `hal`, `vmla`. We also find reuse of upstream dialects like `linalg`, `spirv` and 
`llvm`. The use of the `linalg` (linear algebra) dialect is even abstracting most of the 
complexity with targeting CPUs or GPUs from the system. 

https://google.github.io/iree/


https://nod.ai/productportfolio/

NOD

Another example is the status NOD, which maps some machine learning workload on 
a distributed runtime system. Their compiler stack on the right introduces a dialect for 
each level of abstraction, as such their raised the abstraction exposed by the Legion 
runtime into a dialect that they can expose to their compiler and reason about.

https://nod.ai/productportfolio/


Example: TensorFlow in MLIR

Computational data-flow graphs,
and modeling control flow, asynchrony

TensorFlow itself is making use of MLIR to model its internals.



Arg Arg

Ret Ret

func @foo(  %arg0 : tensor<i1>, %arg1  : tensor<...>) ... {

    %X   = tf.X   %arg0 : tensor<...>

    %Y   = tf.Y   %arg0, %arg1 : tensor<...>, tensor<...>

    %Z:2 = tf.Z   %X, %Y : tensor<...>, tensor<...>

     return    %Z#0,                 %Z#1  : tensor<...>, tensor<...>

}

X Y

Z

TensorFlow in MLIR — Computational Graph Dialect

TensorFlow is like XLA modeling its computation using tensors and operators.

We map it to an SSA IR with a topological sort.
We already have some TensorFlow product using MLIR this way, for example to 
deploy on mobile, TensorFlow users have to invoke a conversion step to target 
TFLite. This is implemented using dialect conversions in MLIR.



Example: Stencils Computation

MLIR for 
accelerating
climate modelling



A Compiler Intermediate Representation for Stencils
JEAN-MICHEL GORIUS, TOBIAS WICKY, TOBIAS GROSSER, AND TOBIAS GYSI

Going back towards a more HPC focus,  here is another use case for MLIR: it is a 
DSL for stencils computation suitable to solve PDE modeling climate and weather.
The goal is to map the high level DSL to cluster of multi-GPUs machines.

https://drive.google.com/open?id=19pSpEsi4I9-MKLRodD-po82HFCWLDAAc


A Compiler Intermediate Representation for Stencils
JEAN-MICHEL GORIUS, TOBIAS WICKY, TOBIAS GROSSER, AND TOBIAS GYSI

You can see the value proposal for the MLIR ecosystem here, the Dawn project can 
focus on the language semantics, and MLIR provides the infrastructure to create their 
high-level stencil IR, and reuse other components to map it to various targets: 
accelerators and runtime.

https://drive.google.com/open?id=19pSpEsi4I9-MKLRodD-po82HFCWLDAAc


A Compiler Intermediate Representation for Stencils
JEAN-MICHEL GORIUS, TOBIAS WICKY, TOBIAS GROSSER, AND TOBIAS GYSI

Here is a sample of what the stencil dialect they implemented looks like. It is intended 
to be capturing their computation at a higher-level, retaining the important semantics 
of the DSL, and as such allowing some specific optimizations. It can be progressively 
lowered to lower level abstractions and refined depending on the system targeted.

https://drive.google.com/open?id=19pSpEsi4I9-MKLRodD-po82HFCWLDAAc


Example: COMET: A Domain-Specific Compilation of 
High-Performance Computational Chemistry

LCPC 2020: COMET: A Domain-Specific Compilation of High-Performance Computational Chemistry
Erdal Mutlu, Ruiqin Tian, Bin Ren, Sriram Krishnamoorthy, Roberto Gioiosa, Jacques Pienaar and Gokcen Kestor
Pacific Northwest National Laboratory, The College of William & Mary, Google

Another recent example is COMET. This is a publication from last month at LCPC: this 
is a DSL for computational chemistry. Again it fits nicely in the framework and the 
ecosystem. As the capabilities of MLIR increases, it’ll be easy for the author of 
COMET to benefit from improved optimizations, or support for multi-GPUs or other 
needs they may have.



This is showing the COMET DSL on the left, and the matching dialect in MLIR before 
it gets lowered to other abstractions and optimized for a given system.



Example: Fortran IR

Flang: the LLVM Fortran Fortrend

We may get really into the heart of HPC now with Flang: the LLVM Fortran Compiler.



An MLIR Dialect for High-Level Optimization of Fortran
Eric Schweitz (NVIDIA)

The design for the Flang IR is based on MLIR. This follow a design similar to Rust or 
Swift. 

https://llvm.org/devmtg/2019-10/talk-abstracts.html#tech19


An MLIR Dialect for High-Level Optimization of Fortran
Eric Schweitz (NVIDIA)

Here is how the dialect may look like: just like for the previous DSL it is intended to 
capture the Fortran specific semantics and enable accurate analyses and 
transformations.

https://llvm.org/devmtg/2019-10/talk-abstracts.html#tech19


An MLIR Dialect for High-Level Optimization of Fortran
Eric Schweitz (NVIDIA)

The kind of thing that are easier to recover with the language semantics than when 
you end up at the LLVM level can be devirtualization: by representing virtual tables 
and virtual calls as first class concept you can leverage the guarantees of the 
language to devirtualize calls.

https://llvm.org/devmtg/2019-10/talk-abstracts.html#tech19


LCPC 2020 Keynote: Preparing for Extreme Heterogeneity in High Performance Computing
Jeffrey S Vetter, Group Leader - Future Technologies Group ORNL

Finally, during the LCPC keynote last month, Jeffrey Vetter from Oak Ridge National 
Lab captured the picture accurately for Flang. You can really see how components 
from MLIR, below the dotted line are leveraged to provide to Flang features like 
OpenMP for multi-processor or OpenACC to target GPUs. This means that targeting 
GPUs from Fortran with Flang could use the same optimization and codegen path as 
XLA used from TensorFlow: this consolidation of effort in the LLVM project represents 
one of the goal of MLIR.
Beyond this picture implementing the Fortran standards and some extensions, the 
fact that Flang is being implemented itself with a set of Dialects means that the 
Fortran internal abstractions may be open and reusable. This could enable DSL 
authors in a HPC context to design their language and tools with a close interaction 
with Fortran libraries (instead of going down to C-like FFI, which is fairly rigid).

https://lcpc2020.cs.stonybrook.edu/content/keynote-and-invited-speakers#vetter


This concludes this section, and it is now time to wrap up!



MLIR : Reusable Compiler Abstraction Toolbox, and More!
MLIR provides all the infrastructure to build IR and transformations:

● Same infra at each abstraction level
● Investment in toolings has compounding effects

IR design involves multiple tradeoffs
● Iterative process, constant learning experience
● MLIR makes compiler design “agile” (and fun!)

Building an ecosystem around dialects:
● Abstractions like “software libraries”
● Every “library API” becomes an IR construct: may be composed, understood, transformed, …
● New “compiler blocks” that compose and lower the cost of writing a new toolchain
● LLVM IR unified the CPU abstraction layer for every frontend, MLIR embraces the many 

abstractions in a end-to-end stack. 
● Large span: from DSLs to runtime to HW design.

With the benefit of hindsight here are some takeaways. The impedance mismatch 
between LLVM IR and programmers gave rise to *many* systems and countless 
rewrites of similar infrastructure, with varying quality. MLIR breaks away with the 
“one-size-fits-all” approach that LLVM IR pushed forward for compilers targeting 
CPUs.
Our experience with MLIR is that it makes compiler development more agile, more 
iterative, but also more importantly: it involves a lot of fun!
Finally my angle today was to advocate for the ecosystem effect. I tried to draw an 
analogy with the reuse and composability we get from software library with the Dialect 
abstractions that MLIR provides. The LLVM community can grow and continue to be 
the place to collaborate on defining these abstractions, and possibly this decade will 
bring to HPC users the same level of usability and productivity that ML practitioners 
enjoy.
MLIR and the associated ecosystem has the potential to impact compiler research, 
reducing the startup cost for new project, making it easy to experiment with new ideas 
by maximizing reuse of existing flow, and finally reduce the path from research to 
production.



Thank you!

Questions?

https://mlir.llvm.org/

Join the community:

Discourse Forums
Discord Chat

Weekly open meeting
Biweekly newsletter

Finally I’d like to point out that we have a weekly open meeting with tech talks that are 
recorded and published on the MLIR website. The community is mainly on the LLVM 
Discourse forums, and if you prefer live chat we’re on Discord. Finally we publish a 
bi-weekly newsletter to stay tuned into the latest developments.

https://mlir.llvm.org/
https://llvm.discourse.group/c/mlir/31
https://discord.com/invite/xS7Z362
https://llvm.discourse.group/c/mlir/mlir-news/37

