
 : an Agile Infrastructure for
Building a Compiler Ecosystem

LLVM Compiler Infrastructure in HPC @ SuperComputing 2020

Mehdi Amini, Google

Hi, I’m Mehdi Amini and I’d like to thank the organizer for inviting me for this talk.
Today, I’ll talk about MLIR, but beyond the core infrastructure that we implemented in
the LLVM project, I’d like to push forward a vision for the next decade around the
need for agility in compiler development, and the potential we have to build a strong
ecosystem around the MLIR infrastructure, in the LLVM Project.

High-Performance Computing
Do we have a common definition for HPC? Some online definitions:

● “the use of parallel processing for running advanced application programs
efficiently, reliably and fast”

● “the practice of aggregating computing power in a way that delivers much higher
performance than one could get out of a typical desktop computer in order to
solve large problems in science, engineering, or business.”

● Wikipedia redirects to “SuperComputer”? What about the “edge”?

I’m glad to have the opportunity to look a bit more in HPC today. In order to prepare
for this talk I wanted to refresh myself on the state of the art HPC environment, and
looked up some definition of HPC. The first one describes it as “the use of parallel
processing for running advanced application programs efficiently, reliably and fast”,
this is my favorite one as it is fairly general, and we can include a lot of application
space “at the edge”: in embedded environment or even in everyone’s pocket with your
smartphone.
Wikipedia is more old-school there and: “High Performance Computing” page
redirects to “Supercomputer”.
Let’s look into a “typical” HPC setup.

Your Typical HPC Setup

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Compute

In general you start with a machine with many CPU cores, the amount varies: for
example a single node in the current fastest supercomputer, the Japanese system
Fugaku, has a single ARM CPU with 48 cores and 32 GB HBM. The former
champion, IBM Summit has two 28 cores Power9 and 512 GB DDR.

An important change in the large decade is that the use of HW accelerators is now
common, mostly has because general purpose GPUs are ubiquitous. For Summit it
accounts for 6 GPUs per node and 96 GB extra HBM, coherent with the CPU.
At this point, let’s have a look at the commonly available programming abstractions.

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Your Typical HPC Setup
Compute

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Cilk?
TBB?
Kokkos?
C++ Standard?

Multi-core can be targeted by various APIs, a common one in HPC may be OpenMP:
the programmer is given control over C/C++/Fortran programs mostly with directives
expressed as pragmas instructing the compiler transformations which are fairly
limited. The control is still in the hands of the programmer.

For GPUs, the de-facto programming model is Cuda. OpenCL is the Khronos
counter-part to CUDA, intended to be more widely available, but it is likely not taking
advantage of the most recent features of Nvidia GPUs the way CUDA does. Both of
these solutions leaves fairly little room to the compiler in practice.

SYCL is a more recent Khronos standard, and can be seen as taking advantage of
modern C++ feature to provide higher-level programming model for OpenCL. Intel is
particularly involved with it and SYCL is present under the Intel One API. It remains a
C++ language extension, where the role of the compiler is fairly limited.

OpenACC is a directive based approach like OpenMP, however it makes different
tradeoffs and the programmer use the directives to instruct the compiler about
properties of the program (a loop is parallel, buffers consumed and produced) and let
more responsibility to the compiler to transform the program.

We can’t be exhaustive here, there are also many library based approaches that are
popular: Cilk, Thread Building Block, Kokkos, and even the C++ Standard since
C++17! These all have limited compiler involvement though.

So this was all about a single node, that’s already a lot to play with, but surely there is
a limit to what you can do here. That’s why you may want to scale this up!

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Your Typical HPC Setup
Compute Network Storage

Cilk?
TBB?
Kokkos?
C++ Standard?

OK, now that we scaled up the machines, we need also some network, possibly
something like Infiniband which is super fast and fancy (with things like RDMA).

Finally we won’t get far without a lot of storage globally accessible from our nodes.
Now that we have to go through the network, the programming model becomes more
challenging.

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Your Typical HPC Setup
StorageCompute Network

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Cilk?
TBB?
Kokkos?
C++ Standard?

GASNet, Charm++
Legion?

The “big fish” in this domain is still MPI. This is kind of the “assembly language” of
distributed computing, but somehow it is still heavily used directly.

Some alternatives may be GASNet and Charm++, and at a higher level, the Legion
runtime. These are all libraries approaches, and GASNet is used as a target by other
high-level projects (language or frameworks).

One of them is Chapel: the last one of the PGAS still actively developed. This is also
my favorite, but I am biased: I discovered Chapel with a full-day tutorial from Brad
Chamberlain in person in 2009. I found the the kind of productivity boost a compiler
can bring to be so amazing that I left my job manually writing OpenMP, Cuda and MPI
and started a PhD on compilers.
A more standard approach may be coarray Fortran, which are now in the standard.
But I’m less familiar with it.

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Your Typical HPC Setup
StorageCompute Network

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Cilk?
TBB?
Kokkos?
C++ Standard?

DSLs
● Ebb
● CLAW
● Liszt
● Spiral? GASNet, Charm++

Legion?

DSHW
● GRAPE

What about DSLs though? It seems like the perfect solution! Scientists express their
problem in a programming model that captures the essence of their mental model and
the compiler can optimize it at a high-level and applies various strategies to map it to
the target system.
I suspect that DSLs unfortunately require a very large investment, as one not only
need to design a solution tailored to a specific domain, but also need to build the
entire toolchain all the way down to MPI (or GASNet) and CUDA. The barrier to entry
is far too large: there are no abstractions that you can compose and reuse while
writing your DSL compiler. We’re coming a bit to the thesis behind this presentation:
software libraries are composable and reusable, compilers abstractions aren’t as easy
to compose.

Finally in the accelerator domain, it seems the GPU have been so powerful that we
aren’t seeing domain specific accelerator for HPC: I haven’t found much more
references since the Gravity Pipe (GRAPE), which is an accelerator for gravitational
model.

https://en.wikipedia.org/wiki/Gravity_Pipe

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Your Typical HPC Setup
StorageCompute Network

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Cilk?
TBB?
Kokkos?
C++ Standard?

DSLs
● Ebb
● CLAW
● Liszt
● Spiral? GASNet, Charm++

Legion?

DSHW
● GRAPE

So what about the LLVM project and the LLVM community: it seems that we have a
good solution for CPUs. LLVM IR is the common language here and has been
successful as the compiler abstraction for targeting single-core CPU. LLVM has
support for OpenMP and OpenCL in Clang, but these are mainly supported as
language feature exposed to the programmer. The OpenMP IR Builder have been
refactored from Clang into LLVM for the purpose of sharing these with Flang and
MLIR, but this is still fairly limited.

Clang supports CUDA, but LLVM IR when used to target GPU only models the stream
of execution of a single GPU “thread”.

Finally of course LLVM with libc++ is involved in the C++ standard library support for
parallel primitives. So it seems as a community that there is a very large space for the
compiler to be present and bring solutions. We believe MLIR is the way for the LLVM
project to start building and offering the kind of reusable abstractions that are need for
assembling a compiler in such a complex space.

https://en.wikipedia.org/wiki/Gravity_Pipe

Similarity and Contrast with Deep Learning
Network

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Compute

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Storage

Let contrast the “traditional” HPC environment with what is happening in deep
learning.

To begin with for some serious learning, you need compute, a lot of compute!
Probably a very similar configuration our HPC cluster.

Then you need some superfast network: you need to feed these nodes with data and
training involves a lot of communication as well!

Finally, you will likely want a very fast storage backend to keep your compute nodes
busy with all the data to process.
All in all we have a very similar system. What is interesting is that deep learning is a
much more recent field that really exploded the last 5 years. It does not have the
baggage associated with HPC, it does not have the millions of line of Fortran libraries
to carry over.
To some extent deep learning may give us some insights into how we may develop
programming model and compilers for HPC if we started over from scratch today.
Indeed in this domain it is all about DSLs.

Similarity and Contrast with Deep Learning

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

StorageCompute Network

Node

Core

Core

CPU

Core

Core

CPU

DDR DDR

DSHW
● Baidu Kunlun
● Cerebras
● Google TPU
● GraphCore
● Huawei Ascend
● Intel Nervana Habana

The big players from the last 5 years are MXNet, TensorFlow, and PyTorch. But there
is a myriad of other frameworks out there.
A common theme though is to meet the scientists where they are: i.e. mostly in data
science language like Python or Julia. There is virtually no one who would target a
heterogeneous cluster with C++ or Fortran and MPI in order to train or deploy
machine learning models.

Another trend is the development of custom accelerators: the large companies like
Intel and Google are present of course, but there is also a large number of startup in
the field.
Let’s look a little bit more into how deep learning training work and I’ll zoom a bit into
how Google TPUs are setup, and how the compiler is a center-piece to the scaling.

Distributed Deep Learning Training 101

compute local
loss / gradientTruth

Forward /
Prediction

Backward /
update weight

Straightforward approach:
process one image at a time

Alright so we first need a task to learn, and preferably something really useful. In
general this involves pictures of cats, and we need a lot of them to train our model.

Then we’ll run the forward pass for our model which will compute a prediction, in
general very incorrect at the beginning. At this point we need to provide feedback to
the system, in general with an external source of truth (manual labelling of the initial
set of picture for example) and compute the loss, i.e. how much incorrect the
prediction was. Then we process with the backward pass which adjust all the
coefficient (or weights) involved.
Now this representation is a bit incorrect, even in theory we’re not supposed to
process images one at a time but all at once because some parts of the algorithm
need to normalize for the dataset. In practice we perform “batched training”.

Distributed Deep Learning Training 101

compute local
loss / gradientTruth

Forward /
Prediction

Backward /
update weight

Batched process:
“Loop Vectorization” - N images per iteration

all-reduce

Average the loss/gradient

The batch process consist in “vectorizing” the loop, and taking the “average” of the
evaluation of these iteration together. The forward pass also take advantage of the
batch to perform some normalization across the “vector” of inputs.

In practice the size of this batch (or “minibatch”) is part of the hyperparameters of the
training: the experts will manually tune this by trial and error. The ideal value can vary
based on the model and the system.

This is all good, not how do we scale this up to tens or hundreds of nodes?

Node 2
(also called replica in TensorFlow)

Distributed Deep Learning Training 101

compute local
loss / gradientTruth

all-reduce

Forward /
Prediction

Backward /
update weight

gradient

Node 1

compute local
loss / gradientTruth

all-reduce

Forward /
Prediction

Backward /
update weight

gradient

Multi-Batched process: N images per iteration x M nodes

This is fairly simple, we just distribute different “minibatch” to different nodes, they can
perform the prediction independently and communicate only for averaging the loss
before applying the backward pass. Their weights always have the same value: this is
synchronous training. We’re not gonna get into asynchronous training today, we’ll
show how we map synchronous training to a distributed cluster in practice, using
Google TPUs.

Google Tensor Processing Units (TPUv3)

420 TFLOPS, 128 GB HBM

TPU Pod: 1024 chips; 32x32 torus topology;
100+ PFLOPS

4096 chips; 128x32; mesh topology;
400+ PFLOPS

https://cacm.acm.org/magazines/2020/7/245702-a-domain-specific-supercomputer-for-training-deep-neural-networks/fulltext

* TPU operates on BF16 format

TPUs, or Tensor Processing Units are publicly available on Google Cloud in their
second and third generation. A single tray in a machine has 4 chips / 8 cores and 128
GB HBM, for 420 TFLOPS, not counting the CPUs in the attached host.

TPUs are assembled in PODs, with 1024 chips / 2048 cores connected with a
dedicated inter-connect network joining the TPUs in a 2D torus topology: no host is
involved in the communications.

More recently, Google published how multiple pods can be chained together and
showed scaling to 4 PODs, with over 400 PFLOPS available! Keep in mind that TPUs
operate at peak on BF16 format.

https://cacm.acm.org/magazines/2020/7/245702-a-domain-specific-supercomputer-for-training-deep-neural-networks/fulltext

15

TPUs are Supercomputers!

Rank Name RMax (PFlops)

1 Summit 148

2 Sierra 95

3 Sunway TaihuLight 93

4 Tianhe-2A 61

5 Frontera 24

6 Piz Daint 21

7 Trinity 20

8 AI Bridging Cloud Infrastructure 20

Source: https://www.top500.org/lists/2019/11/
* TPU operates on BF16 format

TPU Pod: 1024 chips; 32x32 torus topology;
100+ PFLOPS

4096 chips; 128x32; mesh topology;
400+ PFLOPS

Here’s a list of top 10 supercomputers from the top500 supercomputer tracker.
Although TPUs operate on BF16 format, the order of magnitude deserve the
comparison.
Looking at this and at the amount of investment in supporting Deep Learning
infrastructure: some people can see it as a new driving force for high
performance computing.

This list is from last year, but TPUv3 is also not the latest...

https://www.top500.org/lists/2019/11/

16

TPUs are Supercomputers!

https://cloud.google.com/blog/products/ai-machine-learning/google-breaks-ai-performance-records-in-
mlperf-with-worlds-fastest-training-supercomputer

Just this spring in the most recent round of MLPerf, which is a benchmark
suite and a competition where academics and industry are invited to submit
their best score at training some models, Google announced their TPUv4 and
show impressive improvements over a year!

https://cloud.google.com/blog/products/ai-machine-learning/google-breaks-ai-performance-records-in-mlperf-with-worlds-fastest-training-supercomputer
https://cloud.google.com/blog/products/ai-machine-learning/google-breaks-ai-performance-records-in-mlperf-with-worlds-fastest-training-supercomputer

From Supercomputing
to Embedded HPC

Highly specialized hardware
e.g. Google Edge TPU

Edge and embedded
computing zoo

Machine learning is also very present also on the edge, most mobile vendors are
including accelerator designed for deep learning workloads. Google produces the
“Edge TPU” to this end.

https://basicmi.github.io/AI-Chip/

https://basicmi.github.io/AI-Chip/

● Under the hood:
○ Systolic arrays → allow high re-use of intermediate values

○ Parallel processing units, configured statically

○ 1970s computer architecture concept*

○ Use them for the most fundamental linear algebra operation, namely, matrix multiplication

● See also Cloud TPU: Codesigning Architecture and Infrastructure (HotChips 2019)

● Problems: lot of constraints(alignment, padding, no Icache, etc.), hard to program (8-way

VLIW), even more when managing multiple TPUs at once!

Tensor Processing Units

*Kung, H.T. and Leiserson, C.E., 1979. Systolic arrays (for VLSI). In Sparse Matrix
Proceedings 1978 (Vol. 1, pp. 256-282). Society for Industrial and Applied Mathematics.

SOLUTION:

Deep learning involves a lot of linear algebra and in particular stresses the need for
optimizing matrix multiplications. So without surprise, a TPU Core include a 128x128
matrix-multiply unit, with a not-revolutionary design since it borrow the systolic arrays
concept from the 70s. The TPU also has independent vector and scalar units.

While very powerful, the TPU is difficult to program at a low-level and imposes many
constraints around memory transferts to scratchpad, padding and alignment, VLIW
packing, etc.

What’s interesting is that from the beginning, the chosen path to address the
programmatically challenge has been to rely on the compiler, and only expose only a
high-level programming model for the TPU.

https://www.hotchips.org/hc31/HC31_T3_Cloud_TPU_Codesign.pdf
https://cacm.acm.org/magazines/2020/7/245702-a-domain-specific-supercomputer-for-training-deep-neural-networks/fulltext
https://cacm.acm.org/magazines/2020/7/245702-a-domain-specific-supercomputer-for-training-deep-neural-networks/fulltext

● XLA HLO IR : High-level (mostly) linear algebra operations

○ Examples:

■ Dense linear algebra : matmul, dot, convolutions, cholesky

■ Control : While, Conditional

■ Data-ordering manipulations : reshape, transpose, sort

■ Sparse operations : gather, scatter

● Operations designed with deep learning in mind

● The XLA compiler represents these operations as a dataflow graph-based IR. Edges

represent data (tensor) flow, nodes represent an operation.

● Input tensors are statically bounded-shape: the compiler computes an entire static

memory layout.

XLA: Accelerated Linear Algebra

More recent competitors: Glow, TVM.

XLA is the only way to target the TPU: it exposes a programming model relying on
operators manipulating tensors (multi-dimensional array) that are assembled in a
mostly-pure dataflow graph (communications primitives require some ordering).
The operators are general linear algebra operator, but with also many operator
suitable for what we commonly find in deep learning. A design principle in general is
to keep the operators orthogonals to each other.
A limitation of the IR is that every tensor has to be entirely statically shaped: this may
seem overly restrictive but it is also allows simplify the compiler and provide the ability
to perform a lot of of necessary optimization for TPU, in particular layout optimization
to account for the padding and alignment constraint.
Ultimately the entire program is operating on statically laid out and memory bounded:
there is no dynamic memory allocation involved in the execution of the program.
Because this is fundamentally a compiler technology, the operators are “fused” during
codegen: even though in the dataflow graph a sequence of element-wise operation
would appear as if there is a temporary array materialized between each operator.
XLA codegen can also make use of libraries, for example when targeting GPUs it will
use cuDNN primitives when appropriate.

There are some competitors in this field, for example Glow and TVM. However XLA
has some unique features.

https://www.tensorflow.org/xla/operation_semantics
https://ai.facebook.com/tools/glow/
https://tvm.apache.org/

XLA Example

21

This is an example of a fusion of operator: a fusion of operators is handled as single
unit by the codegen.

XLA Scaling: Multi TPUs

22

● Model Parallelism: multiple device can be represented in the graph with automatic

partitioning and communication insertions.

Let’s see how do we scale to make efficient use of our TPU Pods.
First in an XLA computation, nodes can be assigned to different devices. XLA will
ultimately partition the graph and insert communication primitives. The implementation
of these communication primitives depends on the target system, on TPU systems it’ll
involve DMA using the private inter-connect network. On Nvidia GPU it would likely
involve NCCL.

This technique can also reduce the memory limit for the model by splitting it across
two devices, making use of more HBM available.

23

Partitioning annotations can also be placed on the inputs, the

compiler shard the computation accordingly:

tpu_config=tpu_config.TPUConfig(

 iterations_per_loop=100,

 num_cores_per_replica=4,

 input_partition_dims=[[1, 2, 2, 1], None]])

XLA Scaling: Multi TPUs

Another way to use multiple TPUs for a single computation is spatial partitioning: the
user only has to indicate how to shard the input and the compiler will take care of the
rest.
For example here is a TensorFlow API to target TPUs: the user indicates that they
would like to use 4 TPU cores per replica for their models. They also specify how to
shard the dimension of the input. For example here the input images will be split in 4
pieces and distributed to the 4 TPUs.

The compiler is then responsible to manage the partitioning of the graph, managing
communication of the halos or redundant computations as needed.
This can improve the performance, but also again it also increases the amount of
HBM memory available.
The user interface is minimal and it is all automated by the compiler.

24

Weight Update Sharding: eliminate redundancy across device in backprop

XLA Scaling: Multi TPUs

Repeated on
every replica

compute local
gradient

input

all-reduce

weight

update weight

gradient

compute local
gradient

input

all-reduce

weight

update weight

gradient

Batch sharded
across replicas

Device 1 Device 2

Identical

Another optimization implemented in XLA is “weight update sharding”.
Each node processes different data, compute the local gradient, which are then
averaged across all nodes before being back-propagated on each node.
Note that after averaging the gradient, the computation is identical on every nodes.
This can be a large part of the process, up to 45% of the whole time on some models!
XLA can recognize this situation and automatically shard this computation, including
adding the extra communication.

25

Weight Update Sharding: eliminate redundancy across device in backprop

XLA Scaling: Multi TPUs

Device 1 Device 2

compute local
gradient

input

reduce-scatter

weight

update
weight

Gradient
shard

compute local
gradient

input

reduce-scatter

weight

update
weight

Gradient
shard

all-gather all-gather

Fully-reduced
gradient shards
Sharded
update

Instead of averaging the gradients so that every node has the entire copy, the nodes
will only get a shard of the gradient, for example here only half, and perform the
backpropagation on this shard and actually communicate their shard of the update
weight to the other nodes.
We’re trading of an extra communication for much less compute and potentially
memory.

26

XLA and TPU: More Resources

XLA: Accelerated Linear Algebra

Automated GPU Kernel Fusion with XLA

Scale MLPerf-0.6 models on Google TPU-v3 Pods

GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism

GShard: Scaling Giant Models with Conditional Computation and Automatic Sharding

Automatic Cross-Replica Sharding of Weight Update in Data-Parallel Training

Mesh-TensorFlow: Deep Learning for Supercomputers.

JAX is Autograd and XLA, brought
together for high-performance
machine learning research. https://github.com/google/jax

Here are some references if you’re interested in getting more depth into this topic.

Also, a rising star in the domain of Deep Learning framework is JAX: this is a project
coming out of Google research that started as a direct thin wrapper on top of XLA. If
you want to play with XLA capability without all the layers of complexity that comes
with a large project like TensorFlow, JAX is a very elegant solution.
So I showed a sample of the capabilities of XLA, showcasing the kind of things that
can be achieved by compiler co-designed with a HPC system. A key point is that we
achieve very advanced optimizations which allow Machine Learning scientists to stay
in Python, Julia, Swift, or any high-level language and never have to see any Fortran
or MPI. Optimization like weight-update sharding are not for everyone to be
implemented manually either.
Yet, these users manage to make use of a supercomputer? Can this be the future for
HPC in general? What kind of compiler capabilities do we need to get there?

http://llvm.org/devmtg/2017-03//2017/02/20/accepted-sessions.html#20
https://llvm.org/devmtg/2019-04/talks.html#Talk_7
https://arxiv.org/pdf/1909.09756.pdf
https://arxiv.org/abs/1811.06965
https://arxiv.org/abs/2006.16668
https://arxiv.org/pdf/2004.13336.pdf
https://arxiv.org/abs/1811.02084
https://github.com/google/jax

MLIR Genesis

Alright, let me come back to the idea behind MLIR first and why it may be a game
changer for the LLVM community.

From Programming Languages to the TensorFlow Compiler

LLVM IR Machine IR Asm

Swift

Java & JVM
Languages Java BC

SIL IRSwift AST

Rust MIR IRRust AST

Julia Julia IRJulia AST

XLA HLOTF GraphTensorFlow
Ecosystem

● Domain specific optimizations, progressive lowering
● Common LLVM platform for mid/low-level optimizing compilation in SSA form

Clang AST
C, C++, ObjC,

CUDA, OpenCL, ... CIL IR

LLVM managed to achieve the “hourglass” model of providing a unified target for
CPU. However modern languages also redefine their own IR, for example optimizing
the Swift refcounting is much easier at the SIL level where you can capture the
high-level semantics. Similarly Rust borrow-checker would be difficult to implement in
LLVM, and Rust has its own IR (MIR) that enables this.
Many frameworks in the machine learning world are targeting LLVM. They are
effectively defining higher level IRs in the tensor domain, and lowering to LLVM for
CPUs and GPUs. This is structurally the same thing as any other language frontend.

The TensorFlow Compiler Ecosystem

TensorFlow
Graph

LLVM IR

TPU IR

Several others
Tensor RT

nGraph

NNAPI

Many others

Core ML

Many “Graph” IRs, each with challenges:
● Similar-but-different proprietary technologies: not going away anytime soon

● Fragile, poor UI when failures happen: e.g. poor/no location info, or even crashes

● Duplication of infrastructure at all levels

Grappler
XLA HLO

TensorFlow Lite

Zooming on the TensorFlow ecosystem, at the top is the XLA path that we talked
about extensively. However TensorFlow supports many other systems. Most of them
are fairly similar conceptually and all these arrows are complicated “bridges” that try to
integrate these projects together. They rarely lead to a good user experience though,
they are fragile, rarely complete, and hard to maintain.
In general there is poor reuse and a lot of redundancy across all these projects.

MLIR: A toolkit for representing and transforming “code”

Represent and transform IR ⇄↺⇓

Represent Multiple Levels of IR at the same time

● tree-based IRs (ASTs)
● data-flow graph IRs (TF Graph, SSA)
● control-flow graph IRs (TF Graph, SSA)
● target-specific parallelism (CPU, GPU, TPU)
● machine instructions

While enabling

Common compiler infrastructure

● location tracking
● richer type system(s)
● common set of conversion passes
● LLVM-inspired infrastructure

And much more

MLIR is at its Core a generic infrastructure for representing and transforming “code”. It
provides a framework to create an IR and manipulate it. The project is heavily inspired
by the LLVM infrastructure and engineering practices in general. Since MLIR allows to
create new IRs, it also provides facilities for multiple IRs to cohabitate together and a
framework for converting one to another, or a mix of others.

MLIR Story
1. The right abstraction at the right time
2. Progressive conversion and lowering
3. Extend and reuse
4. Industry standard

We listen & learn as we go

The idea is that this capability can be leveraged to easily add new abstractions. This
incentive the compiler engineers to favor very progressive lowering of the abstraction
level, which is convenient in terms of design and testing of the compiler components,
but also maximize the reuse.
This approach has been successful so far, and convinced enough partners in the
industry that the best place for MLIR governance and ensuring a good collaboration
was the LLVM project.

MLIR: Under the hood

Let’s see quickly what is under the hood and explore the basic principles of MLIR.

Very few core-defined aspects, MLIR is generic and favor extensibility:

- Region: a list of basic blocks chained through their terminators to form a CFG.

- Block: a sequential list of Operations. They take arguments instead of using phi nodes.

- Operation: a generic single unit of “code”.

- takes individual Values as operands,

- produces one or more SSA Values as results.

- A terminator operation also has a list of successors blocks, as well as arguments matching the blocks.

MLIR Core Concepts

There aren’t any hard-coded structures or specific operations in MLIR:

even Module and Function are defined just as regular operations!

MLIR core concepts are fairly simple. The IR is organized around three main data
structure:

- Region: …
- Block: …
- Operation: …

The important part to remember is that there aren’t any hard-coded structure or
operations in MLIR. Even the top-level Module and the definitions of Function are just
modeled as any other operation.

Operations, Not Instructions

 %res:2 = "mydialect.morph"(%input#3) { some.attribute = true, other_attribute = 1.5 }
 : (!mydialect<"custom_type">) -> (!mydialect<"other_type">, !mydialect<"other_type">)
 loc(callsite("foo" at "mysource.cc":10:8))

● No predefined set of instructions
● Operations are like “opaque functions” to MLIR

Name of the
results

Op Id
Number of

value returned
Dialect
prefix Argument

Index in
the producer’s results

Dialect prefix
for the type

Opaque string
/

Dialect specific
type

List of attributes:
constant named arguments

Mandatory and
Rich Location

https://mlir.llvm.org/docs/LangRef/#operations
https://github.com/llvm/llvm-project/blob/master/mlir/include/mlir/IR/Operation.h#L27

In MLIR, everything is about Operations, not Instructions: we put the emphasis to
distinguish from the LLVM view. In LLVM you have a fixed list of instructions, which all
are defined with their own class which defines members and storage. It isn’t the case
in MLIR: there is one opaque C++ class and it defines the storage in a generic way for
any possible operation.
Operations can be coarse grain (perform a matrix-multiplication, or launch a remote
RPC task) or can directly carry loop nest or other kind of nested “regions”, we’ll show
some examples later.
Let’s starts with the anatomy of an operation.
What you see on the screen with a lot of color is the generic assembly format for
MLIR. Just like LLVM has a textual output, any MLIR operation can be represented in
this generic format. This makes serialization and deserialization really simple.
So what are the elements that define an operation? There is an isomorphic relation
between the in-memory representation and the generic format, let me walk you
through this.

First, what uniquely identify an operation is its name, you have the operation ID,
prefixed by the dialect name. Together this provides a unique name for an operation.

An operation produces SSA results. An LLVM instruction produces only one SSA
value at most, in MLIR they can generate many. This operation for example defines 2
SSA value as results. The textual IR here uses a single name for the SSA value, and
an index to differentiate the two values.

https://mlir.llvm.org/docs/LangRef/#operations
https://github.com/llvm/llvm-project/blob/master/mlir/include/mlir/IR/Operation.h#L27

In parentheses, you have the list of operands for the operation. This is a
comma-separated list of SSA values. You can see here the name of the SSA value
but also an optional index. Here we’ll use the fourth result of the operation producing
the “%input” result.

After the list of operands is a dictionary of Attributes, which can be seen as extras
operands with are restricted to be constant literal values, they can’t refer to other SSA
value.
On the second line is the type of the operation. We’re using a functional notation, so
after the colon you have the types of the operands in parenthesis.

The type after the bang is the name of a dialect, followed in angle brackets by the
custom serialization of the type defined by the dialect, it is opaque to MLIR. After the
arrow is the type for the results, here this operation defines two results so we have
two types.

Finally on the last line is the location for the operation. We often elide it from the
debug print, but it is always present in memory. Locations are rich: here we can
represent that it corresponds to a particular call site of a function at a given place in
the source.
Alright this what an Operation is made for, and something to keep in mind is that
when you define an operation you really can’t add more state or storage to an
operation. When you define an operation in MLIR you just actually put restriction on
what is valid for the operation: for example can it return a result? Multiple? What are
the restrictions on the types? What attributes are allowed? Actually there is one more
thing though, let’s look at regions.

%results:2 = "d.operation"(%arg0, %arg1) ({

 // Regions belong to Ops and can have multiple blocks.

 ^block(%argument: !d.type):

 %value = "nested.operation"() ({

 // Ops can contain nested regions.

 "d.op"() : () -> ()

 }) : () -> (!d.other_type)

 "consume.value"(%value) : (!d.other_type) -> ()

 ^other_block:

 "d.terminator"() [^block(%argument : !d.type)] : ()

-> ()

}) : () -> (!d.type, !d.other_type)

● Regions are list of basic blocks nested inside of an operation.
○ Basic blocks are a list of operations: the IR structure is recursively nested!

● Conceptually similar to function call, but can reference SSA values defined outside.

● SSA values defined inside don’t escape.

Recursive nesting: Operations -> Regions -> Blocks
Region

Block

Region

https://mlir.llvm.org/docs/Tutorials/UnderstandingTheIRStructure/
https://mlir.llvm.org/docs/LangRef/#high-level-structure

On top of the previous introduced element, another important property of an operation
is that it can hold a list of “region”. The concept of region does not have an equivalent
in LLVM IR. The best analogy is to look at LLVM functions, these are first class
structure in LLVM which hold a body in the form of a CFG. The CFG is a control flow
graph which is hold as chained list of basic blocks. In MLIR, everything is an
operation: even a function is an operation. Operations optionally have one or multiple
regions attached, and a region is nothing else than a list of blocks which may
represent a CFG. This is how functions are modelled in MLIR: an operation with a
region that models the body of the function.
Since a region is a list of basic blocks, which themselves are a list of operations: the
structure is recursively nested! This is a whole new dimension in the IR which opens
up design possibilities. Regions are commonly used in MLIR and very powerful to
express the structure of the IR, we’ll come back to this with multiple examples.
And with this simple structure you can understand almost everything in MLIR.

https://mlir.llvm.org/docs/Tutorials/UnderstandingTheIRStructure/
https://mlir.llvm.org/docs/LangRef/#high-level-structure

https://mlir.llvm.org/docs/LangRef/#dialects
https://github.com/llvm/llvm-project/blob/master/mlir/include/mlir/IR/Dialect.h#L37
https://mlir.llvm.org/docs/Tutorials/CreatingADialect/

Dialects: Defining Rules and Semantics for the IR

A MLIR dialect is a logical grouping including:

● A prefix (“namespace” reservation)

● A list of custom types, each its C++ class.

● A list of operations, each its name and C++ class implementation:

○ Verifier for operation invariants (e.g. toy.print must have a single operand)

○ Semantics (has-no-side-effects, constant-folding, CSE-allowed, ….)

● Passes: analysis, transformations, and dialect conversions.

● Possibly custom parser and assembly printer

You will hear a lot about “Dialects“ in the MLIR ecosystem. A Dialect is a bit like a C++
library: it is at minima a namespace where you can group a set of types, a set of
operations that operate on these types (or types defined by other dialects), and a set
of custom attributes. So just like a C++ library where you define classes, methods,
etc. The Dialect is your own IR library: by defining this set of
types/attributes/operations you can define a closed set that has a well defined
semantics that you can manipulate.
A dialect is loaded inside the MLIRContext and extends MLIR using various hooks,
like for example to the IR verifier: it will enforce invariants on the IR (just like the LLVM
verifier).
Dialects are cheap abstraction: you create one like you create a new C++ library.
There are roughly 20 dialects that come bundled with MLIR, but many more have
been defined by MLIR users: our internal users at Google have defined over 60 so
far!
Something else that is important to know before looking at examples of MLIR, is that
the IR does not always look like the generic format we’ve seen previously. This is
because Dialect authors can also customize the printing/parsing of Operations and
Types to make the IR more readable. Dialect IR are more like DSLs: you may need to
read the documentation to interpret them correctly. You can always disable the
custom printing and have a generic print of the IR though.

https://mlir.llvm.org/docs/LangRef/#dialects
https://github.com/llvm/llvm-project/blob/master/mlir/include/mlir/IR/Dialect.h#L37
https://mlir.llvm.org/docs/Tutorials/CreatingADialect/

Example: Affine Dialect
func @test() {
 affine.for %k = 0 to 10 {
 affine.for %l = 0 to 10 {
 affine.if (d0) : (8*d0 - 4 >= 0, -8*d0 + 7 >= 0)(%k) {
 // Dead code, because no multiple of 8 lies between 4 and 7.
 "foo"(%k) : (index) -> ()
 }
 }
 }
 return
}

With custom parsing/printing: affine.for
operations with an attached region feels
like a regular for!

Extra semantics constraints in this dialect: the if condition is
an affine relationship on the enclosing loop indices.

#set0 = (d0) : (d0 * 8 - 4 >= 0, d0 * -8 + 7 >= 0)
func @test() {
 "affine.for"() {lower_bound: #map0, step: 1 : index, upper_bound: #map1} : () -> () {
 ^bb1(%i0: index):
 "affine.for"() {lower_bound: #map0, step: 1 : index, upper_bound: #map1} : () -> ()
{
 ^bb2(%i1: index):
 "affine.if"(%i0) {condition: #set0} : (index) -> () {
 "foo"(%i0) : (index) -> ()
 "affine.terminator"() : () -> ()
 } { // else block
 }
 "affine.terminator"() : () -> ()
 }
 ...

Same code without custom parsing/printing:
isomorphic to the internal in-memory
representation.

https://mlir.llvm.org/docs/Dialects/Affine/

Here is an example of nice syntax and advanced semantics modelling at the same
using regions is shown here with the Affine Dialect.
The affine dialect is modeling polyhedral loop nests (and a bit more), we see that here
you have a function with nested loops and inside the innermost loop you have a
conditional with some sort of linear equation describing the condition. This is
important for polyhedral tools because it ensures that the loop nest can be analyzed
and transforms within a mathematical framework for correctness.
<walkthrough the IR modeling>
This affine.for loops are pretty and readable, but the generic form really show the
actual implementation.
<walkthrough the IR modeling>

https://mlir.llvm.org/docs/Dialects/Affine/

%13 = llvm.alloca %arg0 x !llvm.double : (!llvm.i32) -> !llvm.ptr<double>

%14 = llvm.getelementptr %13[%arg0, %arg0]

 : (!llvm.ptr<double>, !llvm.i32, !llvm.i32) -> !llvm.ptr<double>

%15 = llvm.load %14 : !llvm.ptr<double>

llvm.store %15, %13 : !llvm.ptr<double>

%16 = llvm.bitcast %13 : !llvm.ptr<double> to !llvm.ptr<i64>

%17 = llvm.call @foo(%arg0) : (!llvm.i32) -> !llvm.struct<(i32, double, i32)>

%18 = llvm.extractvalue %17[0] : !llvm.struct<(i32, double, i32)>

%19 = llvm.insertvalue %18, %17[2] : !llvm.struct<(i32, double, i32)>

%20 = llvm.constant(@foo : (!llvm.i32) -> !llvm.struct<(i32, double, i32)>) :

 !llvm.ptr<func<struct<i32, double, i32> (i32)>>

%21 = llvm.call %20(%arg0) : (!llvm.i32) -> !llvm.struct<(i32, double, i32)>

LLVM as a dialect

More intro to MLIR: https://mlir.llvm.org/docs/Tutorials/Toy/

Another example of a dialect with a custom printer is the LLVM IR itself. Indeed the
LLVM IR can be modeled as a dialect, and actually is implemented in MLIR!
You’ll find the LLVM instructions and types, prefixed with the `llvm.` dialect
namespace.
The LLVM dialect isn’t feature-complete (inline assembly, block addresses, …), but
defines enough of LLVM to support the common need of DSL-oriented codegen.
There are also some minor deviation from LLVM IR: for example because of MLIR
structure, constants aren’t special and are instead modeled as regular operations.

For more details into the MLIR infrastructure, feel free to lookup the website for
documentation, and in particular the Toy tutorial which can walk you through a
practical example.

https://mlir.llvm.org/docs/Tutorials/Toy/

MLIR: an
Ecosystem

Alright so that was the basics of the MLIR infrastructure. But while the infrastructure
alone is already a boost to get started writing a compiler, a large of the value proposal
here is the vision of the ecosystem we can grow in MLIR.

Changing the paradigm for compiler design

● Software libraries are reusable, composable, …
=> software development is agile!

● Can we have compiler IR and abstractions that are easily reusable and composable?

=> MLIR Dialects can make heterogeneous compiler development agile!

No silver bullet:

● composability is never perfect, assembling an entire toolchain is still work,
● But just like assembling a large project by reusing libraries is!

In this section I’d like to bring back the parallel between how software development is
agile: you can reuse other people’s libraries and compose them, and how this is
missing in compiler design. The idea is that MLIR Dialects may be getting us closer to
have this capability for IR design. In particular for heterogeneous compilers where the
paradigms are various and we can’t come up with a single IR like LLVM achieved on
CPU, we need to be agile and have flexibility.
This isn’t a silver bullet though: assembling a toolchain like XLA for a heterogeneous
system in a particular domain is still intrinsically a lot of work. But just like the
availability of libraries like boost aren’t making software development trivial either.
In this section I’d like to talk about these compiler IR abstractions, and develop a
narrative that would surface the value there is to have all of these composable as
needed in MLIR.

Example: Affine Dialect for Polyhedral Compilation

func @test() {
 affine.for %k = 0 to 10 {
 affine.for %l = 0 to 10 {
 affine.if (d0) : (d0 - 1 >= 0, -d0 + 8 >= 0)(%k) {
 // Call foo except on the first and last iteration of %k
 "foo"(%k) : (index) -> ()
 }
 }
 }
 return
}

https://mlir.llvm.org/docs/Dialects/Affine/

The first abstraction is one I mentioned before: the Affine dialect opens the door to
polyhedral optimization. This can be a very powerful tool to have at hand when your
problem can fit the framework.

https://mlir.llvm.org/docs/Dialects/Affine/

Example: Affine Dialect for Polyhedral Compilation

Using PlaidML for Affine Parallel Optimizations in MLIR (Intel) C4ML Workshop (In conjunction with CGO 2020)

This abstraction has already been leveraged and adopted, for example at Intel who
presented their early experience with MLIR and the affine dialect during the “Compiler
for Machine Learning” Workshop earlier this year.
The affine dialect, and the in-tree path to LLVM can boost not only the development of
such tools, but also compiler research in this domain.

https://drive.google.com/open?id=1ewpND_ujfLNM5KKLhPGJRIYs55UkoBGU

Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman Amarasinghe.
The tensor algebra compiler. Proc. ACM Program. Lang. 1, OOPSLA, Article 77 (October 2017)

Example: The Tensor Linear Algebra Compiler (TACO)
http://tensor-compiler.org/index.html

Particularly interesting for its flexibility
in sparse code generation.

Current collaboration to reimplement
it in MLIR!

https://llvm.discourse.group/t/sparse-tensors/2020

Another example of compiler abstraction is what has been demonstrated by the
TACO compiler, and in particular in the domain of codegen for sparse linear algebra.
TACO is a fantastic standalone tool, but it is likely not straightforward to integrate and
reuse in your project. For example if we were to add support to sparse code
generation to a project like XLA, using TACO would probably be through rigid
interface built for the purpose of the integration. It isn’t clear if the current
implementation of TACO would fit in the deployment flow of XLA either. These hurdles
in general lead to reimplementing custom solutions from scratch.
Luckily here, my colleague Aart is currently bringing TACO’s ideas into MLIR!
That means that our ecosystem is growing with two different abstractions, for
polyhedral codegen and for sparse codegen, in an infrastructure intended for making
them compose together in the same project.

http://tensor-compiler.org/index.html
https://llvm.discourse.group/t/mlir-support-for-sparse-tensors/2020

Example: Heterogeneous Compiler IR

We mentioned before that HPC is frequently heterogeneous nowadays, in particular
GPUs are ubiquitous. If I start a DSL compiler to support HPC users I likely want solid
abstraction to target accelerators.

Unified Accelerator and Host Representation
llvm.mlir.global internal @global(42 : i64) : !llvm.i64

func @some_func(%arg0 : memref<?xf32>) {

 %cst = constant 8 : index

 gpu.launch blocks(%bx, %by, %bz) in (%grid_x = %cst, %grid_y = %cst,

 %grid_z = %cst)

 threads(%tx, %ty, %tz) in (%block_x = %cst, %block_y = %cst,

 %block_z = %cst) {

 gpu.call @device_function() : () -> ()

 %0 = llvm.mlir.addressof @global : !llvm<"i64*">

 gpu.return

 }

 return

}

gpu.func @device_function() {

 gpu.call @recursive_device_function() : () -> ()

 gpu.return

}

gpu.func @recursive_device_function() {

 gpu.call @recursive_device_function() : () -> ()

 gpu.return

}

MLIR has already in tree the capability to represent a unified view of the project
across the host and the accelerator.
For example here you have a `gpu.launch` operation that delimit a region that will
execute on the accelerator. The code on the GPU is then able to call GPU functions
directly. We can make use of the LLVM IR dialect for the host and the device side.

Nested Module -> Split Host/Device Code in the Same IR
module attributes {gpu.container_module} {
 func @some_func(%arg0: memref<?xf32>) {
 %c8 = constant 8 : index
 gpu.launch_func(%c8, %c8, %c8, %c8, %c8, %c8)
 {kernel = "function_call_kernel", kernel_module = @function_call_kernel}
 : (index, index, index, index, index, index) -> ()
 return
 }
 gpu.module @function_call_kernel attributes {gpu.kernel_module} {
 func @function_call_kernel() attributes {gpu.kernel} {
 %0 = gpu.block_id() {dimension = "x"} : () -> index
 ...
 %3 = gpu.thread_id() {dimension = "x"} : () -> index
 ...
 call @device_function() : () -> ()
 %12 = llvm.mlir.addressof @global : !llvm<"i64*">
 return
 }
 func @device_function() {
 call @recursive_device_function() : () -> ()
 gpu.return
 }
 llvm.mlir.global internal @global(42 : i64) : !llvm.i64
 func @recursive_device_function() {
 call @recursive_device_function() : () -> ()
 gpu.return
 }
 }
}

Existing transformations can be reused to further split the IR with a nested
`gpu.module` to group the code that has to be compiled for the accelerator.
Again this is all in the same unified IR that preserve the ability to model the entire
program across the host-accelerator boundary.
A basic flow is already implemented in MLIR to JIT this and execute it on MLIR GPU,
using separate compilation module at the LLVM level to build the PTX and embed it in
the CPU module that can be executed.

Nested Module -> Split Host/Device Code in the Same IR

SPIR-V Dialect and Conversions (MLIR Open Meeting Tech Talk)

MLIR also supports SPIRV and Vulkan, we have in-tree a SPIRV dialect allowing to
both import SPIRV binaries but more importantly target SPIRV/Vulkan platforms from
the GPU abstractions. This may be less common in HPC at the moment, but Vulkan is
very common in mobile platforms.

https://drive.google.com/file/d/1WInMmnqvFpspHY5dYdiCok4fbfZkt23k/view

Example: MLIR PatternMatch Execution

Meta-level: MLIR applied to MLIR internals!

This example may be less interesting from an ecosystem point of view, but it shows
an interesting meta-level aspect and I find it too interesting technically to leave it out.

MLIR Pattern Matching and Rewrite
~ Instruction Selection problem.

The idea is to create a dialect to manipulate MLIR IR generically. Starting from
rewrites on the IR approaching the instruction selection problem, we can model the
available rewrites as a finite state machine, and then generate the code that will
actually perform the rewrite. However how to optimize this state machine? Well we
implemented a dialect for this!

MLIR Pattern Matching and Rewrite
An MLIR dialect to manipulate MLIR IR!
func @matcher(%0 : !Operation) {

^bb0:

 CheckArgCount(%0) [^bb1, ^ex0] {count = 2}

 : (!Operation) -> ()

^bb1:

 CheckOpName(%0) [^bb2, ^bb5] {name = "add"}

 : (!Operation) -> ()

^bb2:

 %1 = GetOperand(%0) {index = 0} : (!Operation) -> !Value

 %2 = GetOperand(%0) {index = 1} : (!Operation) -> !Value

 ValueEqualTo(%1, %2) [^rr0, ^bb3] : (!Value, !Value) -> ()

^rr0:

 // Save x

 RegisterResult(%1) [^bb3] {id = 0} : (!Value) -> ()

^bb3:

 %3 = GetDefiningOp(%2) : (!Value) -> !Operation

 CheckOpName(%3) [^bb4, ^bb5] {name = "mul"}

 : (!Operation) -> ()

^bb4:

 CheckArgCount(%3) [^rr1, ^bb5] {count = 2}

 : (!Operation) -> ()

^rr1:

 // Save x, y, and z

 %4 = GetOperand(%3) {index = 0} : (!Operation) -> !Value

 %5 = GetOperand(%4) {index = 1} : (!Operation) -> !Value

 RegisterResult(%1, %4, %5) [^bb5] {id = 1}

 : (!Value, !Value, !Value) -> ()

^bb5:

 // Previous calls are not necessarily visible here

 %6 = GetOperand(%0) {index = 0} : (!Operation) -> !Value

 %7 = GetOperand(%0) {index = 1} : (!Operation) -> !Value

 ValueEqualTo(%6, %7) [^bb6, ^ex0] : (!Value, !Value) -> ()

^bb6:

 CheckOpName(%0) [^rr2, ^ex0] {name = "mul"}

 : (!Operation) -> ()

^rr2:

 // Save x

 RegisterResult(%6) [^ex0] {id = 2} : (!Value) -> ()

^ex0:

 return

}

Interpreted Pattern Match Execution (MLIR Open Meeting Tech Talk)
High level pattern definition dialect PDL Documentation
Interpreted Pattern Execution Dialect Documentation

This the meta-level I mentioned before, the dialect can describe manipulation of the
IR as a program that can be understood, and optimized. For example CSE to
eliminate redundant checks on the IR. This also provide a way for dynamically
injecting rewrites into the compiler, using a plugin system for example, and optimizing
the state machine at runtime.

https://docs.google.com/presentation/d/1U3AHtvn_ONR2D4-ENbghYjqsgocu0VPw_2LLYj_A7Sc/edit
https://mlir.llvm.org/docs/Dialects/PDLOps/
https://mlir.llvm.org/docs/Dialects/PDLInterpOps/

Example: MLIR for HW design

Another example that showcase the wide applicability of the infrastructure is the use
of MLIR for HW design.

Poster from LLVM Dev Meeting’20
https://llvm.org/devmtg/2020-09/

Example: CIRCT Project
Apply MLIR and the LLVM development methodology to the domain of hardware design tools

In particular the LLVM project recently accepted in its incubator the CIRCT project
which aims to apply MLIR and the LLVM development methodology to the domain of
hardware design tools. You can see on the schemar on the right points of integration
with the ecosystem (with the MLIR logo), and in dark the newly introduced
abstractions.
These abstractions may not be interesting to you if you’re not in custom HW, but I can
directly see how this may help people targeting FPGA for example.

https://llvm.org/devmtg/2020-09/

Example: Runtime Abstractions

Another category of abstractions is about runtime systems.

IREE: Intermediate Representation Execution Environment

holistic approach towards ML model
compilation: the IR produced contains
both the scheduling logic, required to
communicate data dependencies to
low-level parallel pipelined
hardware/API like Vulkan, and the
execution logic, encoding dense
computation on the hardware in the
form of hardware/API-specific binaries
like SPIR-V.

https://google.github.io/iree/

IREE is already the perfect example of leveraging the ecosystem and integrate their
ideas into it. They built a low-level runtime system, starting from the principles that
drives the Vulkan API, and built multiple levels of abstractions above this: all in MLIR.
In this picture that represents IREE, most abstractions have a matching Dialect:
`flow`, `hal`, `vmla`. We also find reuse of upstream dialects like `linalg`, `spirv` and
`llvm`. The use of the `linalg` (linear algebra) dialect is even abstracting most of the
complexity with targeting CPUs or GPUs from the system.

https://google.github.io/iree/

https://nod.ai/productportfolio/

NOD

Another example is the status NOD, which maps some machine learning workload on
a distributed runtime system. Their compiler stack on the right introduces a dialect for
each level of abstraction, as such their raised the abstraction exposed by the Legion
runtime into a dialect that they can expose to their compiler and reason about.

https://nod.ai/productportfolio/

Example: TensorFlow in MLIR

Computational data-flow graphs,
and modeling control flow, asynchrony

TensorFlow itself is making use of MLIR to model its internals.

Arg Arg

Ret Ret

func @foo(%arg0 : tensor<i1>, %arg1 : tensor<...>) ... {

 %X = tf.X %arg0 : tensor<...>

 %Y = tf.Y %arg0, %arg1 : tensor<...>, tensor<...>

 %Z:2 = tf.Z %X, %Y : tensor<...>, tensor<...>

 return %Z#0, %Z#1 : tensor<...>, tensor<...>

}

X Y

Z

TensorFlow in MLIR — Computational Graph Dialect

TensorFlow is like XLA modeling its computation using tensors and operators.

We map it to an SSA IR with a topological sort.
We already have some TensorFlow product using MLIR this way, for example to
deploy on mobile, TensorFlow users have to invoke a conversion step to target
TFLite. This is implemented using dialect conversions in MLIR.

Example: Stencils Computation

MLIR for
accelerating
climate modelling

A Compiler Intermediate Representation for Stencils
JEAN-MICHEL GORIUS, TOBIAS WICKY, TOBIAS GROSSER, AND TOBIAS GYSI

Going back towards a more HPC focus, here is another use case for MLIR: it is a
DSL for stencils computation suitable to solve PDE modeling climate and weather.
The goal is to map the high level DSL to cluster of multi-GPUs machines.

https://drive.google.com/open?id=19pSpEsi4I9-MKLRodD-po82HFCWLDAAc

A Compiler Intermediate Representation for Stencils
JEAN-MICHEL GORIUS, TOBIAS WICKY, TOBIAS GROSSER, AND TOBIAS GYSI

You can see the value proposal for the MLIR ecosystem here, the Dawn project can
focus on the language semantics, and MLIR provides the infrastructure to create their
high-level stencil IR, and reuse other components to map it to various targets:
accelerators and runtime.

https://drive.google.com/open?id=19pSpEsi4I9-MKLRodD-po82HFCWLDAAc

A Compiler Intermediate Representation for Stencils
JEAN-MICHEL GORIUS, TOBIAS WICKY, TOBIAS GROSSER, AND TOBIAS GYSI

Here is a sample of what the stencil dialect they implemented looks like. It is intended
to be capturing their computation at a higher-level, retaining the important semantics
of the DSL, and as such allowing some specific optimizations. It can be progressively
lowered to lower level abstractions and refined depending on the system targeted.

https://drive.google.com/open?id=19pSpEsi4I9-MKLRodD-po82HFCWLDAAc

Example: COMET: A Domain-Specific Compilation of
High-Performance Computational Chemistry

LCPC 2020: COMET: A Domain-Specific Compilation of High-Performance Computational Chemistry
Erdal Mutlu, Ruiqin Tian, Bin Ren, Sriram Krishnamoorthy, Roberto Gioiosa, Jacques Pienaar and Gokcen Kestor
Pacific Northwest National Laboratory, The College of William & Mary, Google

Another recent example is COMET. This is a publication from last month at LCPC: this
is a DSL for computational chemistry. Again it fits nicely in the framework and the
ecosystem. As the capabilities of MLIR increases, it’ll be easy for the author of
COMET to benefit from improved optimizations, or support for multi-GPUs or other
needs they may have.

This is showing the COMET DSL on the left, and the matching dialect in MLIR before
it gets lowered to other abstractions and optimized for a given system.

Example: Fortran IR

Flang: the LLVM Fortran Fortrend

We may get really into the heart of HPC now with Flang: the LLVM Fortran Compiler.

An MLIR Dialect for High-Level Optimization of Fortran
Eric Schweitz (NVIDIA)

The design for the Flang IR is based on MLIR. This follow a design similar to Rust or
Swift.

https://llvm.org/devmtg/2019-10/talk-abstracts.html#tech19

An MLIR Dialect for High-Level Optimization of Fortran
Eric Schweitz (NVIDIA)

Here is how the dialect may look like: just like for the previous DSL it is intended to
capture the Fortran specific semantics and enable accurate analyses and
transformations.

https://llvm.org/devmtg/2019-10/talk-abstracts.html#tech19

An MLIR Dialect for High-Level Optimization of Fortran
Eric Schweitz (NVIDIA)

The kind of thing that are easier to recover with the language semantics than when
you end up at the LLVM level can be devirtualization: by representing virtual tables
and virtual calls as first class concept you can leverage the guarantees of the
language to devirtualize calls.

https://llvm.org/devmtg/2019-10/talk-abstracts.html#tech19

LCPC 2020 Keynote: Preparing for Extreme Heterogeneity in High Performance Computing
Jeffrey S Vetter, Group Leader - Future Technologies Group ORNL

Finally, during the LCPC keynote last month, Jeffrey Vetter from Oak Ridge National
Lab captured the picture accurately for Flang. You can really see how components
from MLIR, below the dotted line are leveraged to provide to Flang features like
OpenMP for multi-processor or OpenACC to target GPUs. This means that targeting
GPUs from Fortran with Flang could use the same optimization and codegen path as
XLA used from TensorFlow: this consolidation of effort in the LLVM project represents
one of the goal of MLIR.
Beyond this picture implementing the Fortran standards and some extensions, the
fact that Flang is being implemented itself with a set of Dialects means that the
Fortran internal abstractions may be open and reusable. This could enable DSL
authors in a HPC context to design their language and tools with a close interaction
with Fortran libraries (instead of going down to C-like FFI, which is fairly rigid).

https://lcpc2020.cs.stonybrook.edu/content/keynote-and-invited-speakers#vetter

This concludes this section, and it is now time to wrap up!

MLIR : Reusable Compiler Abstraction Toolbox, and More!
MLIR provides all the infrastructure to build IR and transformations:

● Same infra at each abstraction level
● Investment in toolings has compounding effects

IR design involves multiple tradeoffs
● Iterative process, constant learning experience
● MLIR makes compiler design “agile” (and fun!)

Building an ecosystem around dialects:
● Abstractions like “software libraries”
● Every “library API” becomes an IR construct: may be composed, understood, transformed, …
● New “compiler blocks” that compose and lower the cost of writing a new toolchain
● LLVM IR unified the CPU abstraction layer for every frontend, MLIR embraces the many

abstractions in a end-to-end stack.
● Large span: from DSLs to runtime to HW design.

With the benefit of hindsight here are some takeaways. The impedance mismatch
between LLVM IR and programmers gave rise to *many* systems and countless
rewrites of similar infrastructure, with varying quality. MLIR breaks away with the
“one-size-fits-all” approach that LLVM IR pushed forward for compilers targeting
CPUs.
Our experience with MLIR is that it makes compiler development more agile, more
iterative, but also more importantly: it involves a lot of fun!
Finally my angle today was to advocate for the ecosystem effect. I tried to draw an
analogy with the reuse and composability we get from software library with the Dialect
abstractions that MLIR provides. The LLVM community can grow and continue to be
the place to collaborate on defining these abstractions, and possibly this decade will
bring to HPC users the same level of usability and productivity that ML practitioners
enjoy.
MLIR and the associated ecosystem has the potential to impact compiler research,
reducing the startup cost for new project, making it easy to experiment with new ideas
by maximizing reuse of existing flow, and finally reduce the path from research to
production.

Thank you!

Questions?

https://mlir.llvm.org/

Join the community:

Discourse Forums
Discord Chat

Weekly open meeting
Biweekly newsletter

Finally I’d like to point out that we have a weekly open meeting with tech talks that are
recorded and published on the MLIR website. The community is mainly on the LLVM
Discourse forums, and if you prefer live chat we’re on Discord. Finally we publish a
bi-weekly newsletter to stay tuned into the latest developments.

https://mlir.llvm.org/
https://llvm.discourse.group/c/mlir/31
https://discord.com/invite/xS7Z362
https://llvm.discourse.group/c/mlir/mlir-news/37

